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Prefacio

Este trabajo surge del interés por el analisis armoénico y su aplicacion en el estudio de operado-
res pseudo-diferenciales, particularmente en contextos no euclidianos. La eleccion del toro T™ como
dominio de estudio responde a su riqueza estructural como variedad compacta y grupo abeliano,
lo que permite abordar problemas tanto locales como globales desde una perspectiva unificada. El
texto esta dirigido principalmente a estudiantes e investigadores en anélisis matemético que deseen
adentrarse en la teoria de operadores pseudo-diferenciales en variedades compactas ejemplificada en
este trabajo sobre el toro. Se asumen conocimientos basicos de analisis funcional, teoria de la medida
y anélisis de Fourier, aunque se incluyen capitulos preliminares para facilitar la comprension de los
conceptos fundamentales. La obra se divide en tres partes claramente diferenciadas: los capitulos
iniciales establecen el marco teérico necesario; la parte central desarrolla el calculo pseudo-diferencial
toroidal; y los capitulos finales presentan los principales resultados de acotacion. Cada capitulo inclu-
ye la mayoria de demostraciones pertinentes, de manera que este trabajo sea lo mas autocontenido
posible.

La bibliograffa incluye tanto referencias clésicas como contribuciones recientes, reflejando el de-
sarrollo histérico de la teoria. Se ha puesto especial cuidado en citar trabajos fundamentales y en
destacar las conexiones entre diferentes enfoques. Como resultado de este trabajo, se produjo una se-
rie de tres articulos cientificos originales titulados FEstimates for pseudo-differential operators on the
torus revisited. I, II, III, de los cuales el primero apareceré en el Journal of Mathematical Analysis
and Applications y los otros dos se encuentran en evaluacion en otras revistas, y dos notas cortas titu-
ladas Boundedness of pseudo-differential operators on the torus via kernel estimates y Boundedness
of toroidal pseudo-differential operators on Hardy spaces, que apareceran en Trends in Mathematics
de la editorial Springer, todos ellos en colaboracién con el Dr. Duvan Cardona. Invitamos al lector a
abordar este texto como una guia para explorar un area fascinante del anélisis armoénico moderno.
Las demostraciones seleccionados buscan no solo transmitir resultados, sino también desarrollar la
intuiciébn matematica necesaria para futuras investigaciones en el campo.

De manera muy especial, deseo agradecer al Dr. Duvan Cardona, quien fue mi asesor para este
trabajo, por darme la oportunidad de trabajar con él. Me ha acompanado en mi desarrollo como
profesional y mis primeros pasos en la investigaciéon, apoyandome con todos los detalles técnicos
necesarios para enriquecer mi trabajo. Mas importante atn, me ha aconsejado y apoyado enrique-
ciendome también como persona. Ademas, me abrio las puerta para participar en la Comunidad
Internacional de Matematicos de Latinoamerica (ICMAM Latin America), una hermosa comunidad
con quienes espero poder compartir y colaborar durante muchos anos més.

Guatemala, Octubre de 2025

Manuel Alejandro Martinez Flores
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Resumen

El presente trabajo ofrece una revision sistematica de los resultados de continuidad para opera-
dores pseudo-diferenciales en el toro T", con especial énfasis en las diferencias técnicas respecto al
caso euclidiano. Se examina la acotaciéon de estos operadores en espacios de Lebesgue LP, Sobolev
W, espacios pesados LP (w) y espacios de Hardy HP, para simbolos pertenecientes a las clases de
Hormander Ss(T" x Z"). La exposicién se estructura en tres partes: preliminares sobre analisis
de Fourier y espa(nos funcionales, fundamentos del calculo pseudo-diferencial toroidal usando ope-
radores de diferencia discreta, y demostraciones detalladas de teoremas de continuidad mediante
interpolacién compleja, descomposiciones atémicas, estimaciones de kernel y técnicas de anélisis
armonico. Este trabajo busca suplir la escasez de literatura en espanol sobre el tema, proporcio-
nando una referencia rigurosa y accesible para la comunidad mateméatica hispanohablante. Como
resultado de este trabajo, se produjo una serie de tres articulos cientificos originales: Estimates for
pseudo-differential operators on the torus revisited. I, II, III, de los cuales el primero aparecera en
el Journal of Mathematical Analysis and Applications y los otros dos se encuentran en evaluacion
en otras revistas, y dos notas cortas: Boundedness of pseudo-differential operators on the torus via
kernel estimates y Boundedness of toroidal pseudo-differential operators on Hardy spaces, que apa-
receran en Trends in Mathematics de la editorial Springer, todos ellos en colaboraciéon con Duvan
Cardona.

Palabras clave: Operadores pseudo-diferenciales, toro, analisis de Fourier, analisis armonico

This work provides a systematic review of continuity results for pseudo-differential operators
on the torus T"™, with special emphasis on the technical differences compared to the Euclidean
case. We examine the boundedness of these operators on Lebesgue spaces L, Sobolev spaces W7,
weighted spaces LP(w) and Hardy spaces HP, for symbols belonging to Hormander classes S, (T"
Z™). The exposition is structured in three parts preliminaries on Fourier analysis and functlon
spaces, foundations of toroidal pseudo-differential calculus using discrete difference operators, and
detailed proofs of continuity theorems through complex interpolation, atomic decompositions, kernel
estimates, and harmonic analysis techniques. This work aims to address the scarcity of literature
in Spanish on the topic, providing a rigorous and accessible reference for the Spanish-speaking
mathematical community. As a result of this research, a series of three original scientific articles
were produced: Estimates for pseudo-differential operators on the torus revisited. I, II, III, of which
the first will appear in the Journal of Mathematical Analysis and Applications and the other two are
under evaluation in other journals, and two short notes: Boundedness of pseudo-differential operators
on the torus via kernel estimates and Boundedness of toroidal pseudo-differential operators on Hardy
spaces, which will appear in Trends in Mathematics by Springer, all of which in collaboration with
Duvan Cardona.

Keywords: Pseudo-differential operators, torus, Fourier analysis, harmonic analysis



CAPITULO 1

Introduccién

El estudio de los operadores pseudo-diferenciales constituye una de las piedras angulares del
analisis moderno, con aplicaciones profundas en la teoria de ecuaciones diferenciales parciales, el
analisis armoénico y la teoria espectral. Estos operadores generalizan tanto a los operadores diferen-
ciales como a los multiplicadores de Fourier, permitiendo un tratamiento unificado de problemas
que involucran no solo la regularidad de soluciones, sino también la acotacién en diversos espacios
funcionales. En el caso euclidiano, la teoria esta bien establecida gracias a los trabajos fundacionales
de Calderon, Zygmund, Hérmander y Fefferman, entre otros. Por ejemplo, Calderén y Vaillancourt
demostraron que los operadores con simbolos en la clase S (R™ x R™) son acotados en L*(R")
para 0 < p < 1, mientras que Fefferman estableci6 cotas LP optlmas para simbolos en S cuando
m < —n(1— p)|1/p 1/2]y 0 < § < p < 1. Esto fue extendido al rango completo incluso cuando d>p
por Alvarez y Hounie. Estos resultados, junto con el desarrollo de herramientas como los espacios
de Hardy H' y de funciones de oscilacién media acotada BMO, han permitido un anélisis profundo
de la continuidad de estos operadores mediante técnicas de interpolacién compleja y estimaciones
de kernels. Asimismo, Alvarez y Milman utilizaron herramientas de estimacion de kernel para de-
mostrar continuidad de operadores pseudo-diferenciales euclideanos en espacios de Hardy HP, con
p < 1. Ademaés, técnicas modernas como el uso del operador maximal sharp M# introducido por
Fefferman y Stein, y la teoria de pesos de Muckenhoupt, han permitido extender estos resultados a
espacios de Lebesgue pesados LP(w), como demostraron Park y Tomita.

Sin embargo, el estudio de estos operadores en variedades compactas, como el toro T" := R" /Z™,
presenta desafios particulares debido a la estructura discreta de su espacio de frecuencias y a la
necesidad de desarrollar herramientas adaptadas a este contexto. En el toro, el calculo pseudo-
diferencial puede abordarse de dos maneras: mediante una formulacion local, tratando al toro como
una variedad y utilizando particiones de la unidad, o mediante una definicién global, aprovechando
la estructura de grupo subyacente. Este trabajo se centra en este taltimo enfoque, siguiendo el marco
desarrollado por Ruzhansky, Turunen y Vainikko, que permite definir operadores pseudo-diferenciales
toroidales a través de series de Fourier discretas. Esta perspectiva no solo es natural para el toro,
sino que también facilita el estudio de propiedades de acotacion en espacios de Lebesgue LP(T") y
de Sobolev W (T"), entre otros.

Uno de los problemas centrales en la teoria es determinar bajo qué condiciones un operador
pseudo-diferencial T, definido por un simbolo a(z,{) en una clase de Hérmander S)'s(T" x Z"),
se extiende a un operador acotado entre espacios de funciones. Resultados clasicos, como los de
Calderén-Vaillancourt para L?(R™) o los de Fefferman para LP(R"), han establecido cotas que de-
penden criticamente de los parametros m, p,d del simbolo. En el caso toroidal, aunque muchos de
estos resultados tienen anélogos, las demostraciones requieren ajustes sustanciales debido a la natu-
raleza discreta del espacio de frecuencias Z™, a la falta de invarianza bajo cambios de coordenadas
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cuando p > 1 — § y al hecho que las clases H? y BMO no son estables bajo la multiplicacién de
funciones test en el toro, lo que imposibilita tratar este espacio simplemente como una variedad me-
diante particiones de la unidad. Esta limitacion justifica el estudio independiente del caso toroidal
v la necesidad de desarrollar herramientas especificas para este contexto, lo que refuerza la relevan-
cia de un tratamiento global mediante la transformada de Fourier discreta. Por ejemplo, Delgado
extendio el resultado de Fefferman al toro, probando acotacién en LP para p > 2, mientras que con
Cardona se extendio al toro en el rango completo 1 < p < oo, incluso en condiciones mas generales
donde § > p. Ademaés, con Cardona se extendieron los resultados de continuidad en H?P y LP(w)
para operadores pseudo-diferenciales toroidales

Este trabajo tiene como objetivo revisar y exponer de manera sistemética los resultados de
continuidad de operadores pseudo-diferenciales en el toro, haciendo especial hincapié en las técnicas
de demostracion y en las diferencias con el caso euclidiano. Se abordaran tanto resultados clasicos
como contribuciones recientes, y se exploraran las particularidades del célculo toroidal. La exposicion
se estructura en tres capitulos principales. Inicialmente, se presentan los preliminares necesarios
sobre espacios de funciones, transformadas de Fourier y distribuciones en R™ y T". Ademas, se
incluyen resultados cléasicos de anélisis armoénico, como el hecho que el espacio BMO es el dual del
espacio de Hardy H' y técnicas de interpolacién compleja que permiten extender propiedades de
continuidad a espacios LP con 1 < p < oco. Luego, se introduce la definicién y propiedades basicas de
los operadores pseudo-diferenciales en ambos contextos, destacando las particularidades del calculo
toroidal. Finalmente, se dedican dos capitulos a demostrar los principales resultados de continuidad
en espacios de Lebesgue, de Sobolev, y de Hardy, utilizando técnicas que incluyen interpolacion,
descomposiciones atémicas y estimaciones de ntcleos integrales.

Con este trabajo, se espera proporcionar una referencia accesible y rigurosa que contribuya a
la divulgaciéon de estos temas en espanol y fomente futuras investigaciones en el area. La escasez
de literatura en espanol sobre operadores pseudo-diferenciales representa una barrera significativa
para estudiantes e investigadores hispanohablantes, limitando su acceso a herramientas avanzadas y
reduciendo las oportunidades de formacion especializada. Esta exposiciéon busca reducir esta brecha,
permitiendo el acceso a conceptos avanzados y contribuyendo a fortalecer la comunidad matematica
en espanol.



CAPITULO 2

Objetivos

2.1. Objetivo General

Revisar y exponer los conceptos fundamentales en el estudio de operadores pseudo-diferenciales,
detallando teoremas y demostraciones importantes para su entendimiento e investigacion.

2.2. Objetivos Especificos

= Definir y explicar los conceptos clave para el estudio de operadores pseudo-diferenciales
= Desarrollar con rigor matematico las bases tedricas de los operadores pseudo-diferenciales

= Introducir de forma accesible al estado del arte en la investigacion de operadores pseudo-
diferenciales



CAPITULO 3

Justificacién

El estudio de los operadores pseudo-diferenciales es esencial en el anélisis moderno, con aplica-
ciones clave en ecuaciones diferenciales parciales (EDP), anéalisis armoénico y teoria espectral. Sin
embargo, la falta de recursos en espanol sobre el tema representa una barrera significativa para
estudiantes e investigadores hispanohablantes, limitando su acceso a herramientas avanzadas y re-
duciendo las oportunidades de formacion especializada. Esta carencia no solo dificulta el aprendizaje
autonomo, sino que también desincentiva la investigacion en areas teoéricas y aplicadas donde estos
operadores son fundamentales, como el anéalisis de regularidad de soluciones de EDP’s. Este tra-
bajo busca reducir esta brecha, proporcionando una exposicion clara y rigurosa de los operadores
pseudo-diferenciales en el toro y sus propiedades de continuidad. Permitiendo asi, el acceso a con-
ceptos avanzados y contribuyendo a fortalecer la comunidad matemética en espafiol, promoviendo
la investigaciéon y la innovacién en un campo con amplias proyecciones tedricas y aplicadas.



CAPITULO 4

Antecedentes

En el caso euclidiano, Calderén y Vaillancourt demostraron que los operadores pseudo-diferenciales
con simbolos en la clase S) (R™ x R™) son acotados en L*(R™) para algin 0 < p < 1, véase [5] ].
Este resultado no puede extenderse cuando p = 1, es decir, existen simbolos en S, (R" x R")
cuyos operadores pseudo-diferenciales asociados no son acotados en L?; para un argumento clési-
co de este hecho debido a Hérmander, consiltese [I8]. Ademéas, Fefferman [20] probé la acotacion
L>(R™)-BMO(R") para operadores pseudo-diferenciales con simbolos en la clase S5 (R™ x R™), con
m = —n(1—p)/2 donde 0 < § < p < 1. Fefferman también obtuvo la acotacion en i (R") para estas
clases cuandom < —n(1—p)|1/p—1/2] y 1 < p < oo. En vista de ejemplos clasicos debidos a Wainger
vy Hirschman, el resultado de Fefferman es 6ptimo para multiplicadores de Fourier. Posteriormente,
Alvarez y Hounie demostraron continuidad LP-L? incluso cuando & > p, vea [2]. Cabe destacar que
el desarrollo historico del problema de la acotacion en LP de operadores pseudo-diferenciales ha sido
discutido en R™, por ejemplo, en [28] [35].

En R"”, la teoria de los espacios de Hardy en varias variables fue tratada exhaustivamente por
Fefferman y Stein en [21]. Estos autores demostraron que es posible aplicar el método de interpolacion
compleja entre H' y L?, y entre L? y BMO, para obtener propiedades de continuidad en los espacios
de Lebesgue LP. Ademas, Fefferman descubrié de manera significativa que el dual del espacio de
Hardy H' es el espacio de funciones con oscilacion media acotada BMO, véase [19]. Estos hechos
permitieron a Fefferman probar la acotacién en LP, 1 < p < 0o, de operadores pseudo-diferenciales
con simbolos en la clase de Hormander 57 (R™ x R”) donde 0<d<p<lym<-n(l—p)l/p—
1/2|. Ademas, Alvarez y Hounie [2] demostraron continuidad hP-LP y HP, con p < 1, para operadores
pseudo-diferenciales euclideanos utilizando propiedades del kernel que explotan resultados obtenidos
en el caso vectorial estudiado por Alvarez y Milman [3].

Por otra parte, Fefferman y Stein introdujeron la funcién maximal aguda M# en [21], la cual sirve
para caracterizar la norma del espacio de funciones con oscilacién media acotada BMO(R™). Ademés,
probaron que satisface una cota superior con respecto a la norma LP de funciones integrables, es
decir, se cumple que || f||z» < [ M f||Ls. Aqui, y en lo que sigue, A < B significa que existe una
constante C' > 0 tal que A < C'B. Ademas, se ha demostrado que si T" es un operador de Calderon-
Zygmund, entonces se tiene la desigualdad puntual M# (T f)(z) < M, f(z), donde M, es la version
L" de la funcion maximal de Hardy-Littlewood. Combinando estas dos estimaciones se obtienen
cotas de continuidad de T de LP en si mismo. Es decir, que

ITfllee SIMPATHlLe S IMefllee S 11 Fllze- (4.0.1)

Esta técnica ha sido ampliamente empleada en una variedad de trabajos de andlisis armoénico, véase
[21]. Por otro lado, Muckenhoupt probé que los pesos w en la clase A, satisfacen la siguiente esti-
macion |[Mf|lzrw) < [1fllzrw), para 1 < p < oo, véase [27]. Combinando estos dos hechos, Park
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y Tomita [29] probaron la continuidad para espacios de Lebesgue pesados LP(w) para operadores
pseudo-diferenciales euclidianos con simbolos en las clases de Hormander S7%(R™ x R™).

Los operadores pseudo-diferenciales con simbolos en las clases de Hormander pueden definirse en
variedades C'*° mediante cartas locales. Por ello, se considera el toro T™ := R"/Z™ como un grupo
aditivo cociente y una m-variedad, con el atlas preferido de sistemas de coordenadas dado por la
aplicaciéon de restricciéon x — x + Z™ en conjuntos abiertos Q C R™, véase McLane [25]. Se nota
que en [I], Agranovich proporciona una definicién global de operadores pseudo-diferenciales en el
circulo S' = T!, en lugar de la formulacion local que trata al circulo como una variedad. Mediante
la transformada de Fourier, esta definicion se extendi6 al toro T™. Ademés, se ha demostrado que
las clases (p,d) de Agranovich y Hérmander son equivalentes, gracias al teorema de equivalencia de
McLane [25]. Asimismo, cotas L? en el circulo que pueden extenderse al toro se encuentran en [36],
en el marco clasico de la teoria de Calderén-Zygmund. En este trabajo, se consideran operadores
pseudo-diferenciales toroidales en el contexto del calculo pseudo-diferencial en el toro desarrollado
por Ruzhansky, Turunen y Vainniko [30, BI]. En este marco, el analogo toroidal del resultado de
Fefferman fue probado por Delgado en [I6] para el toro, aunque aun se requiere que § < p. Este
resultado fue extendido posteriormente a grupos de Lie compactos por Delgado y Ruzhansky [17] y
a variedades con geometria acotada por Gomez Cobos y Ruzhansky [22]. También se ha extendido
para clases de Hérmander subelipticas en grupos de Lie compactos en [13]. El resultado de Alvarez
y Hounie de continuidad L? fue extendido al caso toroidal con Cardona en [12], y para continuidad
HP-LP y HP con Cardona en [10]. El resultado de Park y Tomita de continuidad L”(w) fue demos-
trado para operadores pseudo-diferenciales toroidales con Cardona en [IT]. Para otros trabajos sobre
acotacion LP de operadores pseudo-diferenciales, se remite al lector a [8) 26 [32].



CAPITULO b

Preliminares

En este capitulo se revisaran aspectos bésicos del anélisis armonico en R™ y T"™. Se recuerda que
R™ es un grupo aditivo respecto a la suma usual de vectores con subgrupo aditivo Z™. Entonces, se
define al toro n-dimensional como el grupo cociente T" := R"/Z" = (R/Z)"™. Ademas, el toro puede
ser identificado con el conjunto [0,1)™ y se le puede considerar con la topologia cociente. A lo largo
de este trabajo, se fijara la medida de Lebesgue en R™. Para cualquier punto z := (z1,...,z,) € R?,
se denotara la norma euclideana como

|z = 2] + -+
Sin embargo, podria ser problematico considerar potencias negativas de la norma euclideana, debido

a que se desvanece en cero. Por lo que se considerara una funcién que se comporta asintéticamente
similar, pero no presenta el mismo problema

() := /14 |z|2.

Si se tiene que existe una constante C' > 0 tal que A < CB, se dice que A < B. Si ademés, C
depende de algtn parametro «, se denota A <, B.

5.1. Espacios de Lebesgue en R" y T"

Sea ) un subconjunto medible de R™. Por simplicidad, se supondra que 2 es abierto o cerrado.

Definicion 5.1.1 (Espacios de Bochner-Lebesgue). Sea 1 < p < oo, y X un espacio de Banach. Se
dice que una funcion (fuertemente) medible f : Q@ C R” — X se encuentra en LP(£); X) si su norma

1/p
I fllzr0ix) = (/Q If(@))% dx)

es finita. Para el caso p = oo, se dice que f € L>(€); X) si es esencialmente acotada. Es decir, si

[l (0sx) = esssup || f(z)] x < oo,
e

donde esssup,cq |f(x)| se define como el menor ntimero real M tal que es mayor que || f(z)|/x casi
para todo x € (2, i.e. excepto fuera de un conjunto de medida cero.
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Cabe destacar que en realidad los elementos de los espacios LP(€2; X) son clases de equivalencias
de funciones iguales casi en todo x € ). Sin embargo, es un detalle técnico menor y se acostumbra a
tratarles como funciones. Particularmente, es de interés cuando X = C, entonces se denotara LP(€2).
Ademas, cuando 2 y X sean claros por el contexto, simplemente se denotara ||- || »(o;x) como |- || L».
Ahora, se discutiran propiedades importantes de los espacios de Lebesgue.

Proposicién 5.1.2 (Desigualdad de Young). Sean 1 < p,q < oo, tales que % + % = 1. Entonces

para todos a,b > 0, se tiene que
a?  be
ab < — 4+ —.
p q

Como consecuencia, para g € LU X) y f € LP(Q;B(X,Y)), donde B(X,Y) es el espacio de
operadores acotados X — 'Y, se tiene que fg € L*(;Y) y

1 1
I fgllr < ];IlfH’ip + allgll’iq.
Demostracion. Esto es consecuencia del hecho que z +— e es una funcién convexa. Entonces
ab — elnatinb _ e%lna”—&-%lnb" < lelna" + lelan _ aﬁ bj
P q p q
Completando asi la prueba. O
Particularmente cuando p = 2 = ¢, se tiene la conocida como desigualdad de Cauchy.
Proposiciéon 5.1.3 (Desigualdad de Holder). Sean 1 < p,q < oo, tales que % + % = 1. Entonces,
para g € LI(Q; X) y f € LP(; B(X,Y)), se tiene que fg € LY (;Y) y
£l < [Ifllzrllgllza-

Demostracion. Para el caso p = 1, 0 p = o0, el resultado es trivial. Asi que se considerara el caso 1 <
p < 00, que es una aplicacion de la proposicién anterior. Primero, se supone que || f||z» = ||g|lL« = 1.
Entonces, se tiene que

1 1
gl < =l fllzr + =llgllze = 1.
p q

Ahora, se nota que si ||f||z» o ||g]|L« se anulan, entonces se trivializa la desigualdad. Por lo que se
puede considerar el caso mas general en el que ninguna de las normas se anula de la siguiente manera

H f g
[ fllee 1lgllra

El resultado sigue de la linealidad de la norma L®. O

Ll_

En el caso p = 2 = ¢ se obtiene la desigualdad de Cauchy-Schwarz.

Proposicion 5.1.4 (Desigualdad de Minkowski). Dado 1 < p < oo, sean f,g € LP(Q; X). Entonces
se tiene que

If +glle <[ fllze + llgllze-
Particularmente, || - ||L» satisface la desigualdad triangular y LP(Q; X) es un espacio normado.

Demostracion. Para p =1, o p = oo el resultado se obtiene gracias a la desigualdad triangular de la
norma en X. Ahora, para 1 < p < oo se tiene que

I1f +9llZ» < /Q 1F + gl (1F Ix + llgllx) de

- / 1 + g5l e + / 1+ gl gl x de

o =1 1/p 1/p
< (/Q 1+ @07 dz) [(/ans’(dx) +(/Q|g§(dx) ]

-1
=f +al7- (lfllee + llgllze)-
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Aqui, la primera desigualdad es la desigualdad triangular de la norma de X, y la segunda es la
desigualdad de Holder, por lo que se concluye lo deseado. O

Teorema 5.1.5 (Desigualdad de Jensen). Sea p una medida unitaria en 2, y sea ¢ : I CR = R
una funcion convexa, donde I es un intervalo. Entonces para funciones integrables f : Q0 — I, se

tiene que
w(/fdu> S/wfdu-
Q Q

Demostracion. Note que la convexidad equivale a para cualquier yg € X existe A tal que ¢(y) >
©(yo) + My — yo). Entonces, tome en particular

Yo 1= /Qfdu~

Se tiene que yg € I dado que la medida p es unitaria. Por lo que

/<p0fdu2w(yo)+k/(f—yo)du=¢(yo)-
Q Q

Lo que completa la prueba. O

Ahora se introducen dos resultados importantes y de bastante utilidad. Sin embargo, sus demos-
traciones requieren de herramientas de teoria de la medida o del analisis complejo que se encuentran
fuera del alcance de este trabajo. Por lo que simplemente se enuncian y se recomienda al lector
investigar los detalles.

Proposiciéon 5.1.6 (Monotonia de la norma LP). Sea f: Q1 xQy CR*XR"™ = X yseal <p < 0.
Se supone que f(-,y) € LP(Qq; X) para casi todoy, y quey — ||f(-,y)||L» se encuentra en L*(Qs; X).
Entonces f(z,-) € L'(Q2; X) para casi todo z, la funcion x sz f(z,y)dy se encuentra en LP(21),

A continuacion se presenta un resultado clasico de la interpolaciéon de operadores y espacios
de funciones. Para una discusién méas profunda de estas técnicas, se recomienda revisar Bergh y
Lofstrom [4].

f(y)dy
Qo

s/\vmwmﬂmﬂy
) e

Lp (Ql

Teorema 5.1.7 (Interpolacion de Riesz-Thorin). Sea T : LPo(Q2; X) + LP1(; X) — L®(Q;Y) +
L1 (Q;Y) un operador lineal tal que

ITfllLeo < Mol fllero, T fllpar < Ml fllzer.
Para cualquier 0 < 6 < 1, se definen
1 1-6 0 1 1-60 6

Po Po D1 q9 q0 q1

Entonces, T extiende a un operador continuo de LP?(Q)) en L9 (). Ademds,
ITfllzeo < M= MY||f | ro-

Se continda con el programa de definiciones y propiedades en los espacios de Lebesgue.

Definicién 5.1.8 (Convoluciones). Para funciones g € L'(Q; X), y f € LY(Q;B(X,Y)), se define
su convolucion como

U*@@%=Af@—wﬁw®.

Se puede notar que el cambio de variable y — x—u implica la conmutatividad cuando {2 es invariante
bajo traslaciones (R™ o T™ por ejemplo), es decir fxg =g x* f.
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Nota 5.1.9. En la definicion anterior existe la pregunta sobre la convergencia de la integral. Para
definir la convoluciéon de forma rigurosa, se podria definir primero para funciones que cumplan
condiciones de regularidad més fuertes, como las del espacio de Schwartz que se definira en la
siguiente seccién, para luego definir el operador * : L' x L' — L' que estaria bien definido gracias
a la siguiente propiedad.

Proposicion 5.1.10 (Desigualdad de Young para convoluciones). Sean 1 < p,q,r < oo tales que
% + % =1+1 yseange LYY X), y f € LP(Q; B(X,Y)). Entonces se tiene que

I[f * gl

Demostracion. Se nota que gracias al Teorema es suficiente demostrar

1+ gllee <[ fllzeliglior,  [1f * gl < [ fllzellgllze, (5.1.1)

para % + % = 1. En efecto, bastaria con considerar el operador f * -, los parametros

rr < fllzellgllze-

po=1, pi=t q=p ¢ =00
y || fllz» como ambas constantes de estimacion. Al aplicar la interpolacion

1 1-60 6 1 _1-6 0

r D ' q 1 t’

se obtiene la condicion indicada para los parametros p, ¢, 7. Ahora, se procede a demostrar el primer
estimativo de (5.1.1). Este se obtiene como resultado de la monotonia de la norma LP, vea la

Proposicion En efecto,

1f *gller = H/Qf(- —y)9(y) dy

Lr
< /S 1FC = )l llg@)lx dy

< lleellgllzr-

Por otra parte, el segundo estimativo es resultado de la desigualdad de Holder

1 # gl < /Q 1£(@ = ) lsll9(w)x dy

< Fllzellgl e
Concluyendo con el resultado deseado. O
Las convoluciones son casos especiales de operadores con kernel valuado en operadores.

Definiciéon 5.1.11 (Operador con kernel valuado en operadores). Decimos que un operador T :
C®(Q; X) = C™(Q;Y) tiene un kernel valuado en operadores si se puede escribir como

7f(@) = [ k)i (o)
Q
donde k : Q x Q — B(X,Y), denominado el kernel, es tal que [|k(z,-)||s(x,y) es integrable lejos de
x e Q.
Se continua con un resultado importante sobre convergencia en espacios LP

Teorema 5.1.12 (Convergencia dominanda de Lebesgue). Sea (f)3, una secuencia de funciones
medibles en ) tales que convergen puntualmente a f para casi todo x € . Se supone que existe
g € LY(Q; X) tal que |fx| < g para todo k. Entonces f es integrable y

/ fdz = lim frdx.
Q k—o00 Q
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Nota 5.1.13. Una implicaciéon del resultado anterior es el hecho que los espacios LP son completos, y
por consecuencia son espacios de Banach. Particularmente, si H es un espacio de Hilbert, entonces
el espacio L?(£2,H) es un espacio de Hilbert con producto interno dado por

(f.9)1e = /Q (F(x), g(x))n

Teorema 5.1.14. Las funciones continuas son densas en el espacio LP({2; X).

Demostracion. Basta con demostrarlo para una funcion simple x g, donde F es un conjunto medible.
Por definicion de medida de Lebesgue |E| = inf{> " |I| : E C |J I}, donde los I} son cubos abiertos.
Entonces, siembre existe un abierto U, tal que |U\ E| < €. Ahora, se toma una sucesion de funciones
suaves ¢, tal que ¢,,(0) = 1, que ¢, (t) = 0, para t > 1/n. Entonces, se define ®,,(z) := ¢, (d(z,U)),
donde se toma la distancia al abierto U. Por lo que

1@n — xElr < IXU. — XElr = XU — X0nEllLe < IXUAUlLe + €7,

donde U, es el soporte de ®,,, que se puede ver decrece a U. La prueba se completa por convergencia
dominada. [

Se presenta la version local de los espacios de Lebesgue. Para ello se necesita el siguiente espacio
de funciones.

Definiciéon 5.1.15 (Funciones suaves de soporte compacto). Se dice que ¢ :  C R™ — X es suave
si es de clase C*°, o infinitamente diferenciable. Se define su soporte como

supp ¢ = {z € Q: p(z) # 0}.
Si supp ¢ es compacto, se dice que f € C§°(92; X).

Definiciéon 5.1.16 (Localizacion de espacios de Lebesgue). Se dice que una funcién medible f :
Q2 CR™ — X es localmente integrable o pertenece a LF (9Q; X), con 1 < p < oo si

loc
[ fellLr < oo,
para todo ¢ € C§°(Q).
Ahora, se introducen los espacios de Lebesgue pesados.

Definicion 5.1.17 (Espacios de Lebesgue pesados). Sea w : Q@ C R™ — C una funciéon localmente
integrable no-negativa. Entonces, se puede definir la medida

w(E) = /Ew(x) da.

Por lo que se dice que una funcion (fuertemente) medible f : © — X, pertenece al espacio de
Lebesgue pesado LP(§); X; w) cuando

1/p
1l = ( / |f<x>||§<dw<x>) < oo,

para 1 < p < co. Cuando p = oo, cuando es acotada excepto en un conjunto de w-medida cero.

Proposicién 5.1.18 (Definicion alternativa de la norma LP). Para f € LP(Q; X;w), se tiene que
para 0 < p < 00,

p / Ly (1) di = / 1) 5 du(a).

con ap(t) =w{r € Q: || f(z)||x > t}.
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Demostracion. Basta con notar que para cualquier funcion diferenciable ¢(t) con ¢(0) = 0, se tiene

que
I ( E)HX
et du@ = [ [ 1) dt du(z)
. / (1) / dw(z) dt
0 I1f (z) [l x >t
:/ & (tywlz € Q: |[f@)x > 1} dt.
0
Ahora, el resultado se obtiene cuando ¢(t) = tP. O

A continuacion, se presenta un resultado de interpolacién bastante atil.

Definicion 5.1.19. Sea T un operador desde LP(€2; X; w) al espacio de funciones medibles desde X
hacia Y. Entonces, se dice que T es de tipo (p,q) débil respecto a los pesos (u,w), con q < oo, si se
tiene que

uWezwwwMW>»g<fﬁﬁwf

Ademas, se dice que es de tipo débil (p,q = c0) o tipo fuerte (p, q), si es acotado desde LP(£2; X; w)
hacia L1(3;Y; u).

Teorema 5.1.20. Sea {T:} una familia de operadores en LP(Q; X;w), y se define su operador
maximal asociado

T f(x) = sup | Tof (@) x-

Si Ty es de tipo (p,q) débil respecto a (w,w), entonces se tiene que los conjuntos

{f € LP(w): t11>nt1 T.f(z) = f(x) casi en todas partes} ,
0

{f € LP(w): tlint1 T:f(x) =0 casi en todas partes} ,
—to
son cerrados.

Demostracion. Sea (f,) una susecion de funciones que converge a f € LP(w). Entonces, se tiene que
w{limsup |7, f(z) — f(x)lx > A} < w{limsup [T(f = fn) (@) = (f = f)(@)[x > A}
S w{T(f = fu)(@) > A2} + wi|(f = fu)(2)llx > A/2}
< C2 K 2 1 0
< (S = )+ (31~ Sl =0,

cuando n — oo. Lo que completa la prueba del primer conjunto, para el segundo, se utiliza un
argumento similar con {limsup, ,; ||T;f(z)l|x > A}. O

Teorema 5.1.21 (Interpolacién de Marcinkiewicz). Sean 1 < pyg < p1 < o0, y 1 < qo < 1 <
00, tales que p; < qj. Y sea T un operador sublineal desde LP°(; X;w) + LP'(Q; X;w) hacia las
funciones medibles de 2 en Y, es decir

1T(f + 9)@)|ly < | Tf@)lly + | Tg(@)ly,
[T @)y = IMITf @)y
Ademds, suponga que T es de tipo débil (po,qo) y (p1,q1), respecto a las medidas (u,w). Entonces,

se tiene que T es de tipo fuerte (p,q) respecto a (u,w) para pg < p < p1, o < q<gqi, yp <q, con
la forma

1 1-6 0 1 1-6 6
== + 5 =

po P14 Q@ @
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Demostracion. Sea f € LP, y sea x la funcion indicadora para puntos que satisfacen ||f||x > oA7,
donde o es una constante que se escoge luego, y

_ (01— q0)pop:
(p1 = p2)goqt

Entonces, se descompone
f=Ix+Ff=x)=fo+ f1,

donde se puede ver que f; € LPi. Ademas,

1T @)y < ITfo(@)lly + T 1(@)lly,

arf(A) < arg,(A/2) + aryp, (A/2).

(Caso: p1 < 00) Entonces se tienen las desigualdades

24, i
ors,(2) < (2l )

Ademas, se define Entonces, se tiene que
1Ty =a [ X ars ()
<Z / AN ary (A/2) dX
_ 4;/Pj

<o wmeay (i@ aw) o
- 0
J

<Y / XI=1=05 (9.4, )0 / 15 (@)% du(z) dA
j 0 Q

<o xrmpagn I £(@)1% du(z) dx
0 [[fllx>aAY

o [ wteeaye [ £ (@)% du(z) dA
0 1fllx <oAY

(f1/a) L
— o240 [ @1 [ N1 ) du(z)

a(24,) /||f K / AT1=9 ) du(z)
(flx /o)

2A 2A q1 y491—P
9(2Ao) 0™ / 1 (@)% du(e) + 1A / 1 (@)% du(x)
_ ( 2o s o )||f||
q—qo Q1 —q Lr(w)*

Entonces, si se utiliza ||f||£,}(w)f en lugar de f, se obtiene por homogenidad de T'

WA 1T 1%y <

a9 q1
Ahora, se escoge 0 = %Ao"rqo Af°7" | para obtener una cota que dependa solo de Ay, Ay y p,q.
Particularmente, cuando p; = g¢;

1 1
+

1Tl oy < 20V/7 (
P —DPo p1—

1/p
p) A A fllorwy,  con  — = +—. (5.1.2)
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(Caso q; = o0) Es similar al caso anterior, pero solo con una desigualdad débil. En efecto

(QAO) 090 —P

ITF1%00 < 112 -

particularmente, si p; = ¢;, se escoge o = (2A1)*1, donde ||Tg||L < Ail|g|/Le<, se obtiene (5.1.2).
Lo que completa la prueba. O

Nota 5.1.22. Note que la definicién de continuidad débil y el resultado de interpolacién de Mar-
cinkiewicz vale para cualquier espacio de medida. No necesariamente para la medida de Lebesgue
euclideana.

Ahora, se presenta un resultado de descomposicion que fue demostrado por Calderén y Zigmund
I7l.
Definicion 5.1.23 (Cubos diadicos). En R™, se define a Q) como la coleccion de cubos abiertos por

la derecha, cuyos vértices son puntos adyacentes del reticulo (27%7Z)". Entonces, se les llama cubos
diddicos a los elementos de J,, Q.

Nota 5.1.24. Esta definicién también puede aplicar para © C R”, al tomar la coleccion Q)
{QNQ:Q € Qi}. Ademas, se tiene que estos cubos cumplen con:

1. Dado x € (, existe un tnico Q € Qy, tal que x € Q, para cada k.

2. Para cualesquiera dos cubos diadicos, se tiene que son disjuntos o uno esta contenido en el
otro.

3. Cada cubo en Qj, esta contenido en exactamente un cubo de Q;, para j < k. Ademas, contiene
exactamente 2" cubos en Q1.

Definicién 5.1.25 (Operador maximal diddico). Para f € L}
diddico como

(Q; X), se define el operador mazimal

N /f

Teorema 5.1.26. El operador maximal diddico es de tipo débil (1,1). Ademds, se tiene limy, Ey f(z) =
f(z), para f € Lj,.(Q, X).

Demostracion. Sin pérdida de generalidad, suponga que f es no-negativo. Entonces se descompone

{r€Q: Myf(z) > \} = Uﬂk,

loc

Maf(z) :==sup | Epf(z)|x, con Epf(z):=
k Qe

donde x € Q, si k = min{j : E;f(x) > A}. Este k existe porque Ejf(z) — 0 cuando k — —oo0,
para f € L'. Estos Qj, son disjuntos y por construcciéon pueden escribirse como union de cubos en
Q. Entonces, se tiene que

{2 € Q: Myf(z) > \}| = Zmu
<Z Ekf z)dz
fzz/ o [ s ayas

k QeQy
QCQy

SOOI ROLY
k QeQy
QC

1 1
== d - 1.
O ROLES [
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Ahora, para la segunda parte, es claro que es valido para una funcién continua. Entonces, en vista
del Teorema [5.1.20}, se puede verificar para cualquier f € L} , por un argumento de densidad. [

loc?

Teorema 5.1.27 (Calderon-Zygmund). Para cualquier f integrable y no-negativa, existe una se-
cuencia {Q;} de cubos diddicos disjuntos, tales que

1. f(x) > X casi en todas partes para x ¢ Uj Qj,

2. U, @i < %Iflee,
3 A< g Jo, F< 2N

Demostracion. La prueba del segundo inciso se encuentra en la demostracién anterior. El primer
inciso es consecuencia del hecho que si z ¢ Uj Qj, entonces Ey f(x) < A para todo k, y solo basta
con tomar el limite en vista del resultado anterior. Para el tercer inciso, se ve que por construccién
de los Q;, se tiene que el promedio de f sobre ellos es mayor que A, y ningtin cubo que lo contenga
también lo cumple. Ahora, sea Qj el cubo diddico méas pequenio que contiene estrictamente a @);.
Entonces, se tiene que ~

1 Q5] 1

_ < =gl _ 2
|Q; ij*\Qj||Qj| a;

Lo que concluye la prueba. O]

F<oma

A continuacion se define un operador maximal bastante importante. El operador maximal de
Hardy-Littlewood.

Definicién 5.1.28 (Operador maximal de Hardy-Littlewood). Para f € LT (Q;X), se define al
operador p-mazximal de Hardy-Littlewood como

1 1/p
M, f(x) == Sup (m/QIIf(y)I’S( dy) ,

donde @ son cubos con lados paralelos a los ejes. Cuando p = 1, se considera el operador de Hardy-
Littlewood y se denota M f.

Ahora, se presenta un resultado que evidencia la utilidad de este operador maximal

Teorema 5.1.29. El operador mazimal de Hardy-Littlewood es continuo desde LP(€; X; Mw) hacia
LP(Q;C;w), para 1 < p < co.

Demostracion. Note que si Mw(x) = 0 para algin z, entonces se tiene que w(z) = 0 casi en todas
partes, lo que trivializa el resultado. Entonces, sea t > || f[| ;o (muw), entonces

/ Muw(z)dx = 0,
IF1lx >t

y como Mw(z) > 0, se tiene que |{||f||x > A}| = 0. Esto implica que Mf(x) < A casi en todas
partes. Llevando A al limite se puede concluir que |[Mf||ze(w) < [|f| Lo (Mw). Entonces solo queda
demostrar la desigualdad débil de tipo (1,1), para poder aplicar el Teorema de interpolacion de
Marcinkiewicz. Para esto, se aplica la descomposiciéon de Calderén-Zygmund al operador maximal
diadico

{zeQ: Myf(x) >A}:UQj.

Para cada @;, se toma 3Q);, un cubo concéntrico tal que £(3Q;) = 3¢(Q);). Ademas, se fija x ¢ Uj 3Q;
y un cubo cualquiera @ que lo contenga. Se escoge k € Z, tal que 2871 < £(Q) < 2*, entonces existen
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m < 2" cubos diddicos en Q) que se intersectan con (), que se denotan R;. Note que ninguno esta
contenido en los @;, de lo contrario z € |J ; 3Q);. Entonces, se tiene que

Q/Qfdxﬂ,i/m

1 Il JR;

En conclusioén, se tiene que

{z € Q: Mf(x)>4"\} C | 3Q;.
J

Por lo que, aprovechando la tercera propiedad de la descomposicion,

M A< d
w{Mf > }zj:/ng w(x

4 371Qy]
szwj/wu(ynu Vi /Q7d
3”4”2 / £ @) Mu(y) dy

34"
< . .
S L1l 2t (M)

Lo que concluye la prueba O

En vista de la continuidad débil (1, 1), y el hecho que vale para funciones continuas, se obtiene
que

Corolario 5.1.30 (Teorema de diferenciacion de Lebesgue). Para f € L, .(Q; X), se tiene que

tm —+ F)dy = f(x),

r—0 |B($ T)| B(z,r)

casi para todo x € Q. En particular, ||f|lx < Mf casi en todas partes, y

8 B, @)~ S@ ey =

cast en todas partes. A los puntos que lo satisfacen se les llama puntos de Lebesgue.

Ahora, se presenta una caracterizacion de pesos para los cuales el operador maximal de Hardy-
Littlewood es continuo.

Definiciéon 5.1.31 (Clases de pesos de Muckenhoupt). Para un par de funciones localmente inte-
grables no-negativas u,w : Q2 C R® — C, se dice que pertenece a la clase de pesos de Muckenhoupt
A, si

P
Mu(z) S w(z), casipara todo z, p=1;

x = >p1
sup(|Q|/ (x)dx) <Q|/Qw(x) dz <oo, l<p<oo.

Teorema 5.1.32. Se tiene que el operador mazimal de Hardy-Littlewood es de tipo débil (p,p),
respecto a las medidas (u,w) siy solo si (u,w) € Ap.
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Demostracion. (=) Primero, suponga que f es no-negativa, note que si fg := ﬁ f 0 f dz, entonces
fo <M(fxq)(x) para cualquier z € Q. Por lo que para cualquier A < fq, se tiene que Q C E) g :=
{z € Q:M(fxq)(x) > A}y

W(Q) < u(Brg) < /|f )P du(z

JoPu@) 5 [ ot

Particularmente, para cualquier conjunto medible S C @), se puede cambiar f por fxs y obtener

<|¢12|/Sf(x)|dx>pU(Q)S/Slf(w)Ipdw(x). (5.1.3)

Ahora, se puede ignorar el caso trivial u(z) = 0, casi en todas partes, y se fija f = x5, para obtener
1S]Pu(Q) S 1QPw(S),

y concluir que w(z) > 0 casi en todas partes. Cuando p = 1, fije t > essinfgw ,y para S, := {z €
Q:w(x) < t}, se tiene que [S¢| > 0, que u(Q)/|Q| < t, v que

z)de < essmfw < w(x),
@ fy

para casi todo z € Q. Es facil ver que esto implica la condicién A;. Cuando 1 < p < oo, se considera
la funcion f(z) := w(z)~ Y@= de tal manera que f(z) = f(z)Pw(x), y con Sy := {z € Q : w(z) >
1/k} en (5.1.3)), se tiene que
P
(1/ w(x)—l/(p—l) dx) uw(Q) < / w(x)—l/(p—l) dz.
|Q‘ S)C Sk

Ademés, como f esta acotado en Si, se puede manipular para obtener

(@ /Sk w(x)l/(pl)dx>p1 <|Q1|/Qdu(x)) <C.

Como w(x) > 0 casi en todas partes, se tiene que @ \ |J,, Sk tiene medida cero y se puede concluir
la, condicion A, al hacer k — oo

(|é/€2w(x)_1/(p_1)dx>p_l <612|/Qdu($)) <C.

(<) Para p = 1, por la continuidad débil del operador de Hardy-Littlewood, se tiene que

w{Mf > A} S A7 /Q (@) Muw(z) dz S A~ /Q @) (@) dz = [ £ w)-

Cuando 1 < p < oo, se utiliza la desualdad de Holder para tener que

-1 z)|w(z)Pw(z) VP dx
fa =gy [ H@ @) rui) e

< (& [ @irute) dx>1/,, (i [ wtay o as) e

Entonces, se tiene que

(fru@) < 5 ( /Q |f($)|pw(x)d:c) <22| /Q w(z)- YD dx)“
< [ 1@ ar

Entonces, se obtiene (5.1.3)), que implica la desigualdad débil. O
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Corolario 5.1.33. Sea (u,w) € A,, entonces el operador r-maximal de Hardy Littlewood es continuo
desde L1(Q); X;w) hacia LY(Q; C;u), para p < q/r < co.

Demostracion. Primero, considere el caso r = 1. En vista del Teorema de Interpolacieén de Marcin-
kiewicz, solo queda demostrar la continuidad para ¢ = co. Primero, como u(E) > 0 implica |E| > 0,
se tiene que
M| oo (uy < IV zoe
Por otra parte, como w(x) > 0 casi en todas partes, se tiene que |E| > 0, implica w(F) > 0 y que
1z < [1fllzoe (u)-

Como ademés, |[Mf|lL < ||f|lL~, se concluye la prueba para este caso. Ahora, como M, f =
M| ][5)1/7, se tiene que

4 du(z) = r \q/T wlz q wl(zx
/Q(Mrf) dufz) /QM<||f|\X> du )i/QHfllxd (),

Nota 5.1.34. Note que este caso incluye el caso particular para las medidas (w, Mw).
Ademas, (5.1.3) brinda otro corolario acerca de las medidas de conjuntos

Corolario 5.1.35. Sean w € A, y sea 0 < o < 1. Sea un conjunto medible S C ), donde ) es un
cubo, tal que |S| < a|Q)|, entonces existe 0 < 8 < 1, tal que w(S) < pw(Q).

Demostracion. Considere xg\s en lugar de S, entonces
(1QI = IS)Pw(Q) < ClQIP[w(Q) — w(S)],

w(@Q)(1 — )P < Clw(Q) —w(S)],

C—(1-a)P
TW(Q),

lo que concluye la prueba. O

w(S) <

Teorema 5.1.36 (Desigualdad inversa de Hoélder). Sea w € A, entonces existe € > 0, tal que se
tiene que para cualquier cubo

1 . 1/(14¢) 1
— [ wdx 5—/ wdz.
(|Q|/Q ) QI Jg

Demostracion. Tome un cubo @, y un « fijo, tal que 0 < a < 1, defina entonces la sucesién
Ax = (27 )*w(Q)/|Q|, de tal manera que 2"\, /Ar+1 = a. Entonces tome la descomposicion de
Calderon-Zygmund de w en el cubo @ para todo A, para asi obtener sucesiones de cubos diadicos
{Q%} disjuntos tales que w(z) > Ay, para casi todo z € Q, := U; Q. y

1
Q51 Jar

Ahora, fije un cubo Q;‘?, entonces Qf N Qg1 es la union de cubos Qf“ y se tiene que

QY N Qg | = Z Qi+

K3

1
< d
S 2w

1
< / wdx
A1 ok

Mot ‘Qg| = 0‘|Qj .

IN
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Entonces, como w € A,, existe 0 < § < 1, tal que w(QéC N Qpy1) < 5w(Q§) Al sumar respecto a
todos loss cubos Q;? se obtiene que

W( Q1) < Bu(Q), v que w(@) < FFuw(Qy).

Entonces, se tiene que

1 / 1te 1 1+e 1 / I4e
— w der = — w dz + — E w dx
QI Jo Q) Q\Qo Q) Qi1

k

0 IQI 1l ZA’“H“’

Z My -1 (k-‘,—l)s)\sﬁk (QO)

0
IQI QI
Entonces basta escoger ¢, para que (2"a 1) < 1, para poder estimar mediante

w(@ | C . w(@)  (w@\'
o T g 2 T ‘( IQI) ‘

Lo que completa la prueba. O

Una consecuencia inmediata es que
Corolario 5.1.37. Se tiene que
1. Siw € Ay, entonces wl™P € Ay,
2. A, = Uq<pAq, para 1 < p < o0,
3. sea w € A,, entonces, existe € > 0, tal que w'*e € A,,.

Demostracion. Para el primer inciso, se tiene que

’ 1 ’ ’ p/_l
1-p —(1=p")/(p'-1)
bup dm) ( / w(z) dx) < 00,
<Q| / Q[ Jo

es la condicion A, elevada a p’ — 1, como 1 —p' = —1/(p—1),y —(1 —p')/(p' — 1) = 1. Para el
segundo inciso, se utiliza la desigualdad inversa de Holder con w!™P"| para tener que existe algin

e > 0 tal que
1 , 1/(14¢) 1 ,
</ wt—P)0+e) dx) hS —/ w'P da.
Ql Jg QI Jg

Entonces, tome ¢, tal que 1 — ¢’ = (1 — p’)(1 + ¢). De esta manera, ¢ < p, y

(o) G o) i ) G for

como (¢ —1)(1+¢) = p—1. Entonces, se cumple que w € A,. Para el tercer inciso. Si p = 1, entonces
se tiene que para cada cubo @) y para casi todo x € @, se cumple que

1 / I+e 1
— [ wtdy Sw(x)'E.
QI Jq

Cuando p > 1, tome ¢ tal que la desigualdad inversa de Holder funciona para w y w'=P". Entonces
la condicion A, para w'T se vuelve la condicion A, de w elevada a la 1/(1+¢). Lo que concluye la
prueba. O



CAPITULO 5. PRELIMINARES 20

Ahora, se presenta el concepto de dualidad entre espacios de Lebesgue valuados en espacios de
Banach

Definicion 5.1.38 (Propiedad de Radon-Nikodym). Se dice que un espacio de Banach X satisface
la propiedad de Radon-Nikodym si para cualquier medida valuada en vectores, se puede encontrar
una funcion (fuertemente) medible que sea su densidad.

Teorema 5.1.39. Suponga X' satisface la propiedad de Radon-Nikodym, entonces LP(Q2; X) =
LY (Q; X').

Demostracion. Es claro que si f € v (©; X’), entonces

/Q (rg) Az < [l oo

para cualquier g € LP(€; X). Ahora, sea un funcional continuo 7' : LP(€; X) — C. Entonces, se
define la medida valuada en X', como (v(E), z) := T(xg - ). Por la propiedad de Radon-Nikodym,
se puede encontrar f :  — X’ fuertemente medible tal que

/Q<f,XE~x>dy: </Efdy,:1:> = v(E),z) =T(xE - x),

para todo z € X y E medible. Como esto funciona para toda las funciones simples, entonces
vale para todas las funciones fuertemente medibles. Ademas, como T es continuo, se tiene que
Al = 1T O

Para concluir, se incluye una desigualdad bastante ttil.
Teorema 5.1.40 (Hardy-Littlewood-Sobolev). Sea 0 < a < n, y sean 1 < p < ¢ < oo tales que
1 1
q p

Ademds, si se define el potencial de Riesz como

/ Iw—yI” |z —y[n—e’

3le

entonces || Inflloe S |f|lLe-

Demostracion. Note que

fly)dy [ m! e
. |w—y|n-a/o = | fasdear = [

donde f,r = [q._. f(z +rz)do(z). Entonces, || fo(r)|x < Mf(z), y por la desigualdad de Holder

Hfz(T)HX Y /B( ) |f(y)| dy < r—an”Lp,rn(p—l)/p —
Por lo que, para algin r,,

Mo f (x)lx S/ r* M () dr+/ PP flle dr S M (@)rg + (| f |l Lory P
0

T

Al tomar 7, := [Mf(2)]~/"|| f||2", se tiene que

Lo f(2)]lx S Mf(2)] o/ Fl50"

Ademaés, por la continuidad del operador maximal de Hardy-Littlewood
Iaf@)ga S 115" / M ()P de S A IR

Entonces, el resultado se obtiene cuando (1 — ap/n)q = p. O
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5.2. Transformada de Fourier en R"

Ahora, se procede a definir y mostrar propiedades importantes de la transformada de Fourier, una
herramienta fundamental para el estudio de las ecuaciones diferenciales en general y los operadores
pseudo-diferenciales en particular.

Definicién 5.2.1 (Transformada de Fourier en R"). Dada f € L*(R"™; X), se define su transformada
de Fourier como

~

flo) = [ emmoesada,

(Frn f)(E)

para cualquier £ € R™.

Proposicién 5.2.2. La transformada de Fourier es un operador continuo Fgn : L'(R™; X) —
L>*(R™; X) con norma uno:

[fllzee < [IfllLe-
Ademds, f es continua en todas partes.

Demostracion. El estimativo es resultado de la desigualdad de Minkowski para integrales clasica
‘ / e*Q“iz'gf(x) dx < / |6—2mm-§| ||f(9€)HX dz
n X R?’I,
< Iflle-

Ahora, la continuidad es consecuencia del teorema de convergencia dominada de Lebesgue. Para
cualquier £ — £ se define

() 1= €2 ()

Entonces, se tiene que |hy| < |f| y se obtiene que

/ e 2™ S f(z)dz = lim e~ 2Tk f(z) dz.

k—o0 Rn

~ ~

Que es exactamente f(€) = lim f(&), el resultado deseado. O

A pesar de que la transformada de Fourier estd bien definida en el espacio L'(R"; X), este
presenta ciertas limitaciones técnicas debido a los pocos requerimientos de regularidad para las
funciones en este espacio. Es muy util tener acceso a otras herramientas resultantes de continuidad,
diferenciabilidad, y decaimiento. Por lo tanto, se introduce notacion que serd importante a lo largo
de este trabajo.

Definicion 5.2.3 (Notacion de multi-indice). Para a = (aq,...,a0),08 = (f1,...,0n) € Nj, se

define
g 009

ox{*  Oxpm
De forma similar, 27 := xfl :
longitud del multi-indice como |«

—-zPn. Se dice que a < B si a; < 3; para todo i. Ademés, se denota la
‘=1 + - ay, y su factorial como a! = aq!- -yl

Definicion 5.2.4 (Espacio de Schwartz S(R™)). Se dice que una funcion suave (infinitamente dife-
renciable) ¢ : R™ — X decae rdpidamente, y se encuentra en S(R™; X) si se cumple que

sup ||x580‘<p($)||x < 00,
rER™

para cualesquiera multi-indices «, 8 € Njj. Ahora, se dice que ¢; — ¢ en S(R™; X)) si

sup 12°0% (05 — @) (@)l x — O,

cuando j — oo para cualesquiera multi-indices «, 8 € N.
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Proposicion 5.2.5. Para cualquier 1 < p < oo se tiene que S(R™; X) C LP(R™; X) con encaje
continuo.

Demostracion. El caso p = oo es trivial, pues las funciones en el espacio de Schwartz son acotadas
por definicion. Sea ¢; — 0 en S(R™; X), entonces

| le@lide = [ @Vl @) da

< méax sup |28, (x p/ z) PN dz — 0,
max s e, [ (@

donde N € N se escoge de manera que la ultima integral converga. O

Atn mas, es densa en estos espacios.
Teorema 5.2.6. FEl espacio S(R™; X) es secuencialmente denso en LP(R™; X), para 1 < p < oo.

Demostracion. Primero, supénga 1 < p < oo. Tome una funcion ¢ € C§°(R"™), tal que es igual a
uno en una vecindad del origen, no-negativa, y tal que [t = 1. Entonces tome ¢y () := k"¢ (kz),
y defina f, := ¢ % f. Por lo que

1= fllr < [ 1= 9) = Sk oy dy = [ 176 =0/8) = FO)Lv i) dy =0,

por el Teorema de diferenciaciéon de Lebesgue. Ahora, si p = oo, se tiene que la clase de Schwartz es
secuencialmente densa en el espacio de funciones continuas, por un argumento similar al anterior,
que a su vez son densas en L. O

Teorema 5.2.7. Sea ¢ € S(R™; X). Entonces 2mi&;p(§) = B/JQ\D(Q y 2miz;p(€) = —0;9(§)

Demostracion. Para la primera expresion se procede por integraciéon por partes

Fyo(6) = / €D, () de
- / (9,27 ) p(a) d
Rn

:2m'§j/ e 2w o (r) da.

Se nota que no aparece el término con la frontera debido a que ¢ se desvanece en el infinito. Ahora,
para la segunda expresion

8§j@(§):/ e 2L (2mix;)p(x) da.

n

Concluyendo la prueba. O

Por lo que se puede concluir lo siguiente

Corolario 5.2.8. Sea ¢ € S(R™; X). Entonces,
£90°3(¢) = (2mi)|*1-18 (— 1)1l 9B [zag) (€).

Por lo que

I€20°3(6)x < [zl [ 0w p(a)]x ds
Rn
< 2wl sup 1+ ol 1% a () [ (1 la) o
rER™ R
— C sup [[(1+ o)™ 10 (@)

TER™
< 00.
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Particularmente, Frn mapea S(R™) en si mismo. Ademds, por el teorema de convergencia dominada
de Lebesque, la transformada de Fourier es un operador continuo.

En realidad, es un isomorfismo en S(R™; X). Para ello se demostraran algunos lemas ttiles.

Lema 5.2.9 (Férmula de multiplicacion para la transformada de Fourier). Sean f € L'(R"; B(X,Y)),
y g € L'(R"; X). Entonces, fR” fgdx = fRn fgdx.

Demostracion. Aplicando el teorema de Fubini

Foao= [ N[ emerpan] gt as

= /n fy) Un eI Yg(x) dx} dy

= fgdy.
Rn

Rn

Concluyendo la prueba. O

Lema 5.2.10 (Transformada de Fourier para Gaussiana). Se tiene que
/ e—27'ri:t<§e—srr2\z\2 dr = (7.[.5)—?1/2e—|§‘2/€’
para todo € > 0. Gracias al cambio de variable © — 27wx y e — 2¢, esto equivale a
/ i e=1el/2 g — (2 o) /2 67/ (22).

Demostracion. La segunda expresion sigue del caso unidimensional

/OO e Tt /2 44 — o= 77/2 /OO e~ (t+iT)?/2 g4

26—72/2/ e—t2/2 dt
= 27re_72/2.

Con el cambio de variable ¢t — /et y 7+ 7/4/T se tiene que
\@/ efitrefet2/2 dt = h?we’TZ/(QE).

El caso multidimensional sigue del producto de las integrales unidimensionales. O

Teorema 5.2.11 (Férmula de inversion de Fourier). La transformada de Fourier es un isomorfismo
de S(R™; X)) en si mismo con inverso dado por

(Fal (@) = / ST f(6) de.

n

Demostracion. El teorema de convergencia dominada de Lebesgue permite realizar la sustitucion

(Fan @) () = / TTEG(E)de = 1m [ 2T EG(e)e 2 6 e

Rn e—0 Rn

= h'm/ / 62“(1’*1/)'5%0@)6*28”2|§|2 dy de.

e—0
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Con el cambio de variable y — y 4+ x se obtiene que

(fﬂgn = hm/ / e~ 2mwE oy + x)e —2em?fg)? dy d&.

e—0

Por el teorema de Fubini y la transformada de Fourier para Gaussianas se tiene que
(.Fﬂgnl(,/@\)(l‘) = hm (p(y —+ aj)/ 6_27”?!'56—25772\5\2 dg dy
R n

—1tm [ oy + x)(2me) " 2e WP/ 22) gy
e—=0 Jrn

Con un dltimo cambio de variable y — /2 se concluye

(Fel@)(@) = lim | o(Vez +a)(2m) 21/ dz
E— R™

= (271')*"/2<p(m) /n el 12 4y = o(x).

Finalizando con la prueba. [

El siguiente teorema relaciona la transformada de Fourier con las convoluciones

—

Teorema 5.2.12. Sean 1 € SR X), yp € S(RMB(X,Y)), entonces se cumple que @ * ’(/J(é) =
D(EY(E), que pp(€) = (Px1)(§). En particular, sit, o € S(R™;H), entonces [(p,V)n = [(P,V)n

Demostracion. Para la primera expresion se tiene que
Frue) = [ o u)(e)do
=[] e ol ey dy s
= [ ] et ) ay de
= o)y

b (E).

Ahora, para la segunda expresion

@*)(€) =

\

P& —y)v(y) dy

/ e @i dedy

=2 () [ [ it >dy] da

Il
%\\

n

e—QTriw{sD(x)z/;(x) dr = @(f)~

n

-~

Para la tercera expresion se define x := (-, )3, entonces

/Rnwwﬂ—/nxso /nxso /ns5$

Completando la prueba. O

Nota 5.2.13. Cuando ¢ = 1, se tiene la indentidad de Plancherel [ ||¢||3, = [||@||3,. Esta puede
extenderse para funciones en L? como se sabe que la clase de Schwartz es densa. Ademas, se puede
extender al caso general X.
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Teorema 5.2.14 (Identidad de Plancherel). Para f € L*(R™; X), se tiene que || f| 2 = ||f]| 1z

Demostracion. Tome una funcién simple f = Z;" T;XE,, entonces para cualquier z* € X', se tiene
que (x*, f) € L?(R™). Por la identidad de Plancherel para espacios de Hilbert, se tiene que

* 2 _ - N :m *424:m K \(2 T2 = * TV|2
[ 1w —/Rn;'“’%” e, = Sl )P = D" ) | El= [ e

como [ |Xg,|? = [ xg, = |Ej|. Ahora, note que la imagen de f esté contenida en un espacio finito
dimensional Y generado por los x;. Por lo que existen funcionales z7,...,z} tales que

k
lzl% =D i, o).
y4

La prueba se concluye al tomar la suma respecto a estos funcionales. O

5.3. Transformada de Fourier en T"

Se fija la notacion del toro n-dimensional como T" := (R/Z)™ = R™/Z"™. Esta identificacion se
realiza tanto en el contexto de grupo aditivo cociente como en el de topologia cociente. Se suele
identificar a T™ con [0,1)"™ como subconjunto de R™, y se fija su medida como la restriccion de la
medida euclideana. Se puede entender una funcién definida en el toro como una funcién 1-periodica.
Es decir, si g : R® — C cumple que g(z) = g(x + k) para cualesquiera x € R™ y k € Z"™, entonces
puede identificarse con una funcion f : T" — C definida como f([z]) = g(z), donde [z] es la clase de
equivalencia de z € R" en el cociente. No obstante, no es necesario realizar la distincién entre punto
y clase de equivalencia y se denotarda x € T", de manera similar, se dird que f = g para los fines de
este trabajo.

Definicion 5.3.1 (Espacio de Schwartz S(Z™)). Sea S(Z™; X) el espacio de funciones de decaimiento
rdpido ¢ : Z™ — X que satisfacen
le(@©)llx <ar €)Y,

en todo &£ € Z™, para cualquier M > 0. La convergencia de este espacio esta dada por las seminormas
Pr(#) = supgezn (€)*|p(2)].

Definiciéon 5.3.2 (Transformada de Fourier periodica). Sea Fpn : C®°(T™; X) — S(Z™; X) la
transformada de Fourier periodica definida por

~

(Fruf)(©) = Fl6) = [ e fa)d.
Ademas, se define la transformada de Fourier periodica inversa Fo,. : S (Z"; X) — C°°(T™; X), como

(Fra@)(x) = D ™ p(6).
gezn
Teorema 5.3.3. La definicion[5.3.9 es vdlida. Es decir,
1. FrnC®(T™ X) C S(Z™; X),
2. Fp!S(Z7 X) € C>(T™ X)),

8. Frn o Frol y Fol o Frn son la funcion identidad en S(Z™; X) y C>(T™; X) respectivamente.
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Demostracion. Para la primera parte, se toma f € C°(T™; X) y a € Nj. Entonces

~

(—i2m)* f(§) =

= (4)‘@'/ eI L9 f(2)] da < 0.

/ (—i2m€)*e™ 2728 () dx
[ ze @) o

26

Por lo que [[()M f(€)||x < oo para cualquier M < oo, y f € S(Z"; X). Para la segunda parte, se

toma p € S(Z"™; X) y se tiene que

|05 [Frte(@)]lx < Y [oge (¢

£emn

para M lo suficientemente grande. Por lo que F. 7}@

gezm

aprovecha la convergencia uniforme para tener que

[Fr (Frl ) (6)

Por otra parte, se tiene que

[Frd (Frn ))(2) =

- 1 2my-§ _
falgn;o/nZe flz—y)dy

=: lfm Do (y) f(z —y)dy

/ e—i27rac-£ Z €i27m'ng0(77) dx
']I‘ﬂ,

neZ™

[FSYR N

PR / 2™ (178 dy

n

ISYAl

> em)dne = (8.

nezn

n

cezn

[ s

gezn

(<a

=: lim S, f(z).

a—00

Z ei27rac-§/ e—iery-Ef(y) dy

es suave. Para la tercera parte, primero se

A D, se le conoce como el kernel de Dirichlet y a S, como el operador de sumas parciales. Se puede
trabajar el kernel de Dirichlet para obtener que

— Z €i27ry~§

{<a

n

11

Jj=1¢

n
I | e—i27‘ro¢jyj

J

1

-1

<.

1

o
E et2mY;€;

eiQﬂ'y.f — ]_

20@ + l)yj)

sin(my;)

(eiQTr(Qaj+1)yj -1

)
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Ahora, se utiliza el método de sumabilidad de Césaro, que indica que el promedio de una sucesion
converge al mismo limite que el limite de la sucesion, para definir el kernel de Fejér como

onf@) = Y Suf(a)

(N +1) latlloc <N
1
= | = Y. Day)fl—y)dy
/" (N +1) l[allee <N

= [ Fv@)fe -y
El kernel de Fejér se puede reescribir notando que e?2™%¢ aparece exactamente N + 1 — |5 veces

en la sumatoria, obteniendo que

N

Z (N+1-— |§j|)ei2ﬂyj£j

n
Fn(y) = N+1 " H
lesz

RER163)

Ahora, note que tiene una forma similar al kernel de Dirichlet para obtener que

k
E 127ryj fj )

TTMZ

sin(7(2k + 1)y;)

sin(my;)

Fn(y) = N+1”H

n
=1
n

N+1"H

<.

- 10-

sin(m(2k + 1)y; ) sin(7y;)

= sin®(my;)

BN
=
=

B H i\[: cos(2kmy;) — cos( (k+ 1)my;)

n
ket sin’(my;)
n

<.

B H 1 —cos(m(N + 1)y;)

ot sin®(my;)

N+ 1)n f[ [ sufvw;?yj)}

Este kernel tiene las propiedades que Fy > 0, que an Fn(y)dy =1, y que para § > 0 se tiene que

1
lim Fy(y)dy < lim =0.
N—oo Jso1yl () dy < N—oo (N + 1) sin? "(md)

Entonces, se puede concluir que
loxfa) = f@x < [ 15 =) = F@)x Py () dy
<[ U@ = S@lxExt)dy+ 2~ [ Fxt)dy o,
ly|<d Tn

debido a que el primer término puede ser controlado escogiendo ¢ lo suficientemente pequeno gracias
a la continuidad de f, y el segundo termino puede controlarse al escoger N una vez fijado ¢. Esta
convergencia es uniforme respecto a x debido a la compacidad de T™. Por lo que se justifica la
definicion de la transformada de Fourier y su inversa. O
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Nota 5.3.4. En la demostracion anterior se utilizan técnicas de sumabilidad que son frecuentes en
el analisis de Fourier. Para mayor detalle sobre estas técnicas y el anélisis de Fourier se recomienda
al lector revisar Duoandikoetxea [I8]. Por otra parte, estas técnicas pueden ser utilizadas para
demostrar la convergencia de estas series en la norma LP.

Teorema 5.3.5. La serie de Fourier de f converge a f en la norma LP(T™; X).

Demostracion. Para el operador de Césaro oy y el kernel de Fejér se tiene que

ot = Pl < [ 156~ = FOllrFa(w) dy
< [ W9 = SOl Fel) v+ 20l [ Ful)dy -0,
lyl<é T

donde, de nuevo, se puede controlar el primer término con J y el segundo escogiendo un N apropiado.
O

Definicion 5.3.6 (Espacios de sucesiones (P(C)). El espacio de sucesiones ¢P(C; X), para C un
conjunto enumerable, consiste de las funciones a : C :— X, tales que

1/p
llaller == (Z%l%) < o0

keC
Generalmente, C = Z™.

Teorema 5.3.7 (Identidad de Plancherel). Siu € L*(T"; X), entonces u € (*(Z"; X), y se cumple
que
[allez = [Jull L2

Demostracion. Primero, suponga que X = H un espacio de Hilbert, entonces

(u, Snu)p> = / | ut@), > a)e™ | da

[EI<N

H
_ a(§)7 u(z)efi%rz{ da
EN( / >H
= Y @&, a&)))u = llun|z-

[EI<N
Entonces, se tiene que

Ju — Snullfa = lul3s — (uSww)zz — (Sxu,u)ze + [Swull3s
— 2flulf3 — 2w .

Por continuidad de las normas, se obtiene la identidad deseada al hacer N — oo. Cuando X es
un espacio de Banach general, tome una funcién simple f = Z;" TjXE,;- Entonces, para cualquier
z* € X'/, se cumple que

Lol = [ 3 et e, = Yl ) PLES| = Y e )P 3 IR P = 3l A,
J J J Al zn

como Y |Xg, > = [ xg, = |E;|. Ahora, note que la imagen de f esta contenida en un espacio finito
dimensional Y generado por los x;. Por lo que existen funcionales z7,...,z} tales que

k
lzl% =D i, o).
4

La prueba se concluye al tomar la suma respecto a estos funcionales. O
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5.4. Distribuciones y espacios de Sobolev en R"

En esta seccién se inicia introduciendo el espacio de distribuciones templadas que permite exten-
der la transformada de Fourier a un espacio mas general que L*(R"; X).

Definicion 5.4.1 (Distribuciones templadas S’ (R™; X)). Se define el espacio de distribuciones tem-
pladas como el espacio de operadores lineales continuos u : S(R™) — X. En este caso, se entiende
la continuidad en el sentido que si ¢; — ¢ en S(R™), entonces se tiene que u(p;) — u(yp) en X.
Ademas, se dice que u; — u en 8'(R™; X) si uj(p) — u(p) para todo ¢ € S(R™).

Las funciones en S(R™) se les conoce como las funciones de prueba del espacio de distribuciones
templadas. Otra notacion usual para u(p) es (u, @).

Nota 5.4.2 (Funciones como distribuciones). Se puede considerar a f € LP?(R™; X) como una distri-
bucién templada. Se define el funcional uy de la siguiente manera

(ug, @) = /R fedz.

Claramente es un funcional lineal. La continuidad es resultado de la desigualdad de Hoélder y el
encaje continuo de las funciones de prueba en el espacio LP . En efecto, para ¢; — ¢ en S(R") se
tiene que

[(ug, i) = (up, @) < [[flleello; = ll o —= 0.

Por simplicidad se denota (uy,¢) = (f,¢). Ademas, este encaje es continuo, pues si f; — f en
LP(R™; X), se tiene que
[(fi0) = (ool < f5 = fllzellell Lo

Particularmente, para ¢ € S(R™; X), se puede motivar la definicion de distintas propiedades de
distribuciones mediante la manipulacién del funcional v, mencionado anteriormente. Por ejemplo,
en vista de la integracion por partes tenemos que

n n

<@wwv=/'@mwer:—/ (B56) dz = — (p, D).

Por lo que definimos la derivada en el sentido de distribuciones de la siguiente manera

Definicion 5.4.3 (Derivada distribucional). Para u € 8'(R™; X) se define

<aau7 <)0> = (_1)‘04 <’LL, 3as0>7
para cualquier funcién de prueba ¢ y cualquier multi-indice o € Nj.

Ejemplo 5.4.4. Counsidere la funcién Heaviside, o escaléon, dada por

0, <0
H(aﬁ)::{l 50

Es claro que representa una distribucion templada, asi que se calcula su derivada distribucional

W)=~ [[Hedo =~ [ "5 de = ol = p(0) = (0.,

R 0

Donde § es el funcional conocido como la delta de Dirac. Por lo que se tiene que en el sentido de
distribuciones que H' = 4.

Por otra parte, la formula de multiplicaciéon de Fourier motiva la definicion de la transformada
de Fourier para distribuciones.



CAPITULO 5. PRELIMINARES 30

Definicién 5.4.5 (Transformada de Fourier para distribuciones). Para u € §'(R™; X) se define
(Fu, o) = (u, Fep), <}—_1u»90> = <u7]:_190>’
para cualquier funciéon de prueba .

Ejemplo 5.4.6. Considere la distribucion de la delta de Dirac dada por (4, ) := ¢(0). Se calcula
su transformada de Fourier de la siguiente manera

(Fb.0) = (6.3) = 3(0) = /Rsodx = (Ly).

Por lo que en el sentido de distribuiciones se tiene que 5 =1 la funcion constante, que es acotada y
por tanto una distribucion. También se puede demostrar que 1 = §. En efecto

(F(1), ) = / Fda = FH(F)(0) = p(0) = (6,9).

Teorema 5.4.7. La transformada de Fourier F es continua en S'(R™; X).
Demostracion. Sea u; — u en S'(R™; X)), entonces
wj(p) = u; (@) = u(®) = ulp).
Por lo que es un operador continuo. O
Lema 5.4.8. C5°(R"™; X) es secuencialmente denso en S(R™; X).

Demostracion. Sea ¢ € C§°(R™) igual a uno en una vecindad del origen. Entonces se define 1 (z) :=
Y(x/k) y se puede verificar que ¢ — ¢ en S(R™; X). O

Teorema 5.4.9. C§°(R"; X) es secuencialmente denso en S'(R"; X).

Demostracion. Sea u € S'(R™; X) y sean 1, ¢y, como en la demostracion anterior. Entonces se define
(Yu, ) = (u, ), y se tiene que Yru — u en S’'(R™). En efecto, por el lema anterior se tiene que

<¢ku7 90> = <U7¢k80> - <u7 (p>

Similarmente, ¥xu — @ en S'(R"), lo que implica que F~ (%) — u en S'(R") debido a la
continuidad de la transformada de Fourier. Entonces, se tiene que

U = 1/)k[f_1(1/)k’zb\)] — U

en §'(R™). Solo queda demostrar uy, € C5°(R™; X), en el caso general, para cualquier x € C§°(R"™),
se tiene que

n

(F (@), @) = (@ xF1g) = / (@ X(©)e ) p(x) da.

Por lo que se puede identificar F~!(x@)(x) = u(x(£)e*™*€), que es continua respecto x y que sus
derivadas respecto a x tienen soporte compacto respecto a &, por lo que las derivadas de F~1(x@)(z)
tienen soporte compacto. O

Definicion 5.4.10 (Espacios de Sobolev). Sea 1 < p < oo y sea k € Ng. El espacio de Sobolev
Wﬁ(R";X ) consiste de todas las funciones f € LP(R™; X) tales que para cualquier multi-indice
|a] < k se tiene que 0° f existe (en el sentido de distribuciones) y pertenece a LP(R™; X). Para tales

funciones se define Y
p

Il = | Do N0 fIE |

jal<k

para 1 < p < oo. Para p = oo se define como

— md le%
I fllwe féﬁ%’i”a fllzes-
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Nota 5.4.11. Se advierte al lector que existen otras notaciones disponibles en la literatura. Por
ejemplo L7, o WP*_ Ademés, cuando p = 2, se suele denotar como HF.

Teorema 5.4.12. Sea f,g € WI?(R"; X) y sea o un multi-indice con || < k, entonces se tiene que

1. 9°f € Wi_la‘ y que 0%(0°f) = 0°TBf = 98(0°f), para todos multi-indices que satisfacen
al + B8] < &,

2. M+ pg € W) y 0%(Nf 4 pg) = X0 f 4+ pd®g, para cualesquiera A, € C,
3. - ||WI£c es una norma,
4. WE(R™; X) es un espacio de Banach.

Demostracion. Los primeros dos incisos son resultado de la definicién de derivada en el sentido de
distribuciones. En efecto, para (1) se tiene que

<8a(86f)a90> = (_1)|a‘<8ﬂf, 0%p) = (_1)\(¥|+|m<f, 8a+’8(p>.

El otro caso es analogo. El inciso (2) es resultado de la linealidad de (-, ). Para el inciso (3) es claro
que [[Af|lwr = |Al[|f]lwy por lo anterior, y que | f|lyx = 0siy solosi f se anula en casi todas partes.
La desiguafdad triangular para p = oo es trivial, para el caso 1 < p < 0o se tiene que

1/p
1F+glwe = D 10°F+0%gl%,
la|<k
1/p

< D2 U0 fllee + 0%l Le)?

o <k

1/p 1/p

< > loesIn, + D lovgl,

o] <k o <k
= [Ifllwx + llgllwy-

Para el inciso (4) se toma una sucesion de Cauchy f; en W}. Entonces, 8 f; es una sucesion de
Cauchy en LP para todo |a| < k. Como LP es completo, se tiene que 9” f; converge a algin g, en
LP. Entonces, se tiene que

(090, @) = (—=1)*! (g0, 0%¢)
= lim (—=1)11(f;, 0%p)
J—00
= jllﬁlo@ fise)
= <ga790>
Por lo que 0%go = g y fj — 90 eanlf' -

Teorema 5.4.13 (Encaje de Sobolev). Sea s € N, tal que s > k + n/2. Entonces se tiene que el
espacio de Sobolev W§(R™; X) estd contenido en el espacio de Hélder C*(R™; X) y la inclusion es
continua.

Demostracion. Sea u € W$(R™; X), entonces por la identidad de Plancherel se tiene que

fulfos = X ol ~ 3o [ lePla@IR g~ [ (4 IR IO dc

lal<s la]<s R
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Ahora, basta demostrar que dou € LY(R™; X) para |a| < k, porque esto implicarfa que su transfor-
mada inversa es continua y acotada. Utilizando Cauchy-Schwarz, se obtiene que

[ ea@iass ([ aseemora) ()

S llulflw;-

1/2

Donde la segunda integral es finita dado que 2|a| — 2s < 2k — 25 < —n. Ademas, se tiene que
sup [|0%ul|x < [|0%ul[r1 S [Jullws,

por lo que la inclusién es continua y se completa la prueba. O

5.5. Distribuciones y espacios de Sobolev en T"

Teorema 5.5.1 (Distribuciones templadas S’(Z™; X)). Los elementos u del espacio de distribuciones
templadas S§'(Z"; X), que consiste de operadores lineales continuos de S(Z™) en X, tienen la forma

= (u0) = Y u(€)p(é).

Demostracion. Note que se puede definir

u(n) = (u, o),

y como cada ¢ € §’(Z"™) puede ser escrito como

entonces se concluye que

(u, ) = <u > sﬁ(n)5n> = em)(u,dy) = > emuln).

neL™
U

Definicion 5.5.2. El espacio de distribuciones periddicas D'(T™; X) consiste de los operadores
lineales continuos definidos de C*°(T") en X. Note que esto incluye a las funciones f € LP(T™; X)
con 1 < p < oo definiendo su operador correspondiente de la siguiente manera

(fro)i= [ feda
'JI'TL
Ademés, similarmente al caso euclideano, se define la derivada distribucional como a continuacion

(0%u, ) := (=1)!*(u,0%).

Definicion 5.5.3. Se define la transformada de Fourier periodica en el sentido de distribuciones
como un operador Fyn : D'(T™) — S'(Z™) de la siguiente manera

<-7:T”u> 90> = <ua to ‘F’]IT"1§0>3
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donde (20 ¢)(z) = 1p(—x). Esta definicion es consistente cuando u € C*°(T"; X). En efecto,

(@)=Y u)e()

cezn

=Y 0o [ e tun) do

cezn n

= [ 3 eloer I ua) da

" eezn
= /n(}'fnlcp)(—x)u(:v) dz = (u,10 ]—"f,}@),

Lo que genera el resultado deseado.

Al identificar T™ con [0,1)™ C R™, se puede utilizar la definiciéon de espacios de Sobolev euclideana
para el caso periodico.

Definiciéon 5.5.4 (Espacios de Sobolev). Sea 1 < p < oo y sea k € Ny. El espacio de Sobolev
Wzlf(']I‘";X ) consiste de todas las funciones f € LP(T";X) tales que para cualquier multi-indice
la] < k se tiene que 0*f existe (en el sentido de distribuciones) y pertenecen a L?(T™; X). Para

tales funciones se define ;
1/p

fllws == D2 10%FI%. |
la| <k
para 1 < p < co. Para p = 0o se define como

. 1= max ||0“ .
Il == s 0 .

La demostracion del hecho que los espacios de Sobolev son espacios de Banach es la realizada
para el Teorema Ademas, se presenta el encaje de Sobolev para el caso toroidal, cuya prueba

es analoga a la del Teorema

Teorema 5.5.5 (Encaje de Sobolev). Sea s € N, tal que s > k 4+ n/2. Entonces se tiene que el
espacio de Sobolev W5(T"; X) estd contenido en el espacio de Hélder C*(T™; X) y la inclusion es
continua.

5.6. Espacios de Hardy en R" y T"

En este apartado se presentan las bases de la teoria de interpolacién compleja que permite
extender propiedades de continuidad a espacios LP con 1 < p < oo. Esto es posible gracias al clasico
resultado de Fefferman [19], que indica que el espacio de funciones de oscilacion media acotada BMO
es el dual del espacio de Hardy H'.

Definicién 5.6.1 (Espacio de Hardy H'). Para Q = R", T". Se dice que f € L'(2; X) se encuentra
en el espacio de Hardy H*(; X) si existen fi,..., fn € LY(Q; X) que satisfacen

= _ &A
fi(&) = €| (&)

Se escribe f; =: R;f, se le conoce como la transformada de Riesz, y se define la norma

£l = 11l + D IR fllzr-

Jj=1
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Proposicién 5.6.2 (Plincipio maximal). Sea u una funcion real de clase C? en una region acotada
Q C R™ y continua en 2. Suponga que Au > 0 en Q y que u < 0 en su frontera, entonces se tiene
que u < 0 en todo 2.

Demostracion. Sin pérdida de generalidad, se puede suponer que VZu > 0, en caso contrario se
puede tomar u + g|z|? — § para £,5 > 0 pequefios. Suponga que no vale u < 0 para todo 2, entonces
existe algin maximo positivo en algin z¢ € . Como Vu(xzg) > 0, se tiene que al menos algin
d2u(xo) > 0. Ademés, como es maximo, se cumple d;u(xg) = 0. Usando el teorema de Taylor,

1
w(zo + hej) —u(zo) = ihQafu(xo) + o(h?).

Por lo que no es un méaximo y se obtiene la contradiccion. O
Lema 5.6.3. Sea F := (ug, ..., uy), tal que satisface las ecuaciones de Cauchy-Riemann en Q xR,
es decir

n
Zamj Uj; = Oa Y 81_7' U = 8rkuj7

Jj=0

con xg = t. Suponga que |F| > 0 en algin punto y sea ¢ > (n — 1)/n, entonces se tiene que
A(|F|?) > 0. Particularmente, si ¢ > (n—1)/n,

A(|F|7) ~ [F|72 |V F[%.
Note que las imagenes de las u; pueden encontrarse en un espacio de Hilbert abstracto.

Demostracion. Primero, note que por las ecuaciones de Cauchy-Riemann

ia?uk = 8k iaju]‘ = 0,
7=0 j=0

y que AF = 0. Por la regla de Leibniz se tiene que
OFIF| = qlq = 2)|F|"" 1 (9;F - F)* + q|F|"*[|0;F]* + (0} F - F).

Al sumar respecto a j, se obtiene que
AIF|T = g FI*™ (g = 2) Y (0;F - F)* + |12 Y 10;F 2]

Ahora, si ¢ > 2, por la desigualdad de Schwarz se tiene que > (0;F - F)* < |F]2Y|9,F]? y es
claro que A(]F|?) > 0. Cuando ¢ < 2, note que se puede descomponer a las imagenes en sus
componentes ortogonales y basta demostrarlo para un espacio de dimensién uno. Entonces, tome la
matriz M = (mj) := Ojuk, que es simétrica y por lo tanto diagonalizable a una matriz con diagonal
Ao > ... > \,. Como la traza es invariante respecto a conjugados, se tiene que

_Z)‘j’

j>0

A <n) N

3>0

y por la desigualdad de Schwarz,

Ahora, la norma operador y la norma Frobenius de la matriz también son invariantes ortogonales y

se obtiene que
M3 =25 < 72 N =
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Esto implica que
2 2 2 n 2 2
Z(@‘F'F) < FFIMl2 < [EFIM|r < 7 |F] Z\@jFI :
J J
Lo que implica que A(|F|?). Para obtener la comparacion final deseada, basta con notar que

[FIPY 10, F)? = |FPIVEFP.

Lo que completa la prueba. O

Ahora, se presenta un operador bastante util: la integral de Poisson. Para una discusién exhaus-
tiva, vea Stein [33].

Definicion 5.6.4. Se define el kernel de Poisson n-dimensional como

cpt

donde ¢, es una constante para que su integral sea uno, y para f € L'(Q; X), con = R" T, se
define su integral o extension de Poisson como

(Pf)(x,t) == (P x f) ().

Este kernel tiene una propiedad muy tutil relacionada con la transformada de Fourier. Puede ser
obtenida utilizando coordenadas polares y propiedades de las funciones de Besel, pero queda fuera
del alcance de este trabajo.

Proposicién 5.6.5. El kernel de Poisson puede ser expresado como
FPy(€) = e el
Ademas, tiene una relacion interesante con el operador maximal de Hardy-Littlewood.
Teorema 5.6.6. Para f € L'(; X), con Q = R", T, se tiene que sup,~, | Pf(z,t)|]|x < Mf(x).

Demostracion. Note que

d
/ lz—y|<R (t2 —flla{(—)yHX (ny+1 / / )| f(x +rz)||xr"™ ! do(z)dr.
e<|lz—y|< n—1

Al integrar por partes respecto a 7, se obtiene que

/ / 1F@)llx dyPL(r) dr,

al tomar la norma y al hacer ¢ = 0y R — o0, se puede estimar por

Pi(r) /B o ||Xdy

M (z) / TPl ) dr

0
La prueba se completa al notar que P/(r) ~ (r)="~2. O
Esto permite demostrar propiedades tutiles de las extensiones de Poisson.

Teorema 5.6.7. Sea f € L'(Q;X), g € LY (4 B(X,Y)), con Q = R", T", entonces su integral de
Poisson cumple que

1. Pf es armdnica,
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2. cumple la condicion de frontera limy_,o(Pf)(x,t) = f(x), para casi todo z,
3. tiene propiedad de decaimiento lim; o (Pf)(z,t) =0,

4. se tiene que

[ f@g@az =2 [ [ 4v(PH@ O (P ) dr .
0
Demostracion. Para el primer inciso, se aprovecha su transformada de Fourier, para obtener que

Ou(Py)(w,t) = —F {2rle| fle)e 2l
Or, (P, 1) = F~ {2rig; F(6) }

Entonces, se tiene que
VA(Pf) (1) = F {an?lg? flg)e el | — Z H{amr g fgeme ) <o,

Para el segundo y tercer inciso, se aprovecha que el operador sup,. ||[Pf(z,t)||x es débil (1,1),
entonces el Teorema [5.1.20| implica que basta demostrarlo para funciones en S(€; X). En este caso
es consecuencia de la continuidad de la transformada de Fourier inversa

lim (P ) () = lim F~* {F@)e >} = 71 {J(©)} = f(@),
Jim (Pf)(a,t) = Jim F-1{flg)e2e} 0.
Para el cuarto inciso, se procede descomponiendo
/ / V(PH][V(Pg)|dzdt = / / Vi (Pg)] + t0:(Pf)0:(Pg)dxdt =: I + I5.

Por integracion por partes en Is, se tiene que
b= [ MPDOPYIE ~ [ (PL0PG) + (P HIR(Pg) dtds
Q 0
- / / (P£)0:(Pg) + t(P )3 (Pg) dt da
QJo

- /Q/Omt(Pf)vﬁ(Pg) — (Pf)0,(Pg)dt du,

como Pg es armoénica. Ahora, integrando por partes respecto a x, y luego respecto a t, se tiene que

- /ooo /Q tVa(PHI[Va(Pg)] + (Pf)0(Pg) dz dt

_ ]1/000/Q(Pf)8t(Pg)dxdt

Por la simetria de f y g, se puede reescribir como

h=-1i-; [ [T0rniee + PpePe]dida

1

S /Q [(PF) (P9I da

1
:711+*/fgdm.
2 Jo

Lo que concluye la prueba. O
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Teorema 5.6.8. Para f € LP(; X), con Q = R™,T", se tiene que lim;_,o(P; * f) = f en norma
P

Demostracion. Primero note que por una pequena manipulacion

cpt™™

P) = oy epyeon =

t"Pi(y/t)

Entonces, como [ P,dy = 1, y por la desigualdad de Minkowski

1P f me</Hf — )= FO)llt Py /h) dy—/Hf “ty) — Ol Puly) dy — 0,

cuando t — 0. Esto se da como |f(- —ty) — f(-)|lz» — 0, por el Teorema de diferenciacion de
Lebesgue y se culmina argumentando convergencia dominada. O

Ahora, se presenta un caso especial de una desigualdad de Carleson para variedades demostrada
por Hormander [24].

Lema 5.6.9. Sea pu una medida positiva sobre Q x Ry, con Q = T™ R"™, tal que pu(T (xo,h))
donde T'(zo, h) := {(z,t) : 0 <t < h, |x — 20| < h}. Entonces, se tiene que

| ien@olans [ 1@,
QxR Q

donde f € LP(R™; X), y1 < p < 0.

< h",

~

Demostracion. Primero se nota que

d
IPfeol 5 [ G

Cuando |z¢ — y| < t, se tiene que

tfwlxdy /
—Nt " FW)lx dy.
/Buo, (t+ |z —y[)n+ o) If )l

Ademas, cuando 281t < |zg — y| < 2Ft, se obtiene que

/ HFWIxdy o / 17 ) x dy
{ B(£0,2kt)

9k —14<|zg—y|<2re} (E+ |z —y[)rtt ™~

S t—n2n(k—1) / f dy.
| B( xo,2’“t ) B(zo,2v0) 17l

Sumando todas las partes se obtiene que

1 .
I(PF) (@, t)]lx < sup Blzo.s)| /B(m’s) 1f(W)llx dy =: f(z,1).

s>t

Ahora, se define

E(e, M) := {(z’,t):0<t<M, |f||de>r(5+t")}.

B(z',t)

Entonces, si existe una secuencia (z;,t;) C E(e, M), tales que las bolas B(z;,t;) son disjuntas, se

tiene que
Sret <Y [ Wlxde< [ flxde
j j Y Blxj:ts) Q2
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Por lo que dichas secuencias deben ser finitas. Entonces, sea My := sup{t : (z,t) € E(e, M)}
y se escoje (z1,t1) € E(e, M), tal que 3t; > M. Si ya se escogieron j — 1 puntos, entonces se
define M; como el supremo de los t tales que (z,t) € E(e, M) y que B(z,t) es disjunta a las bolas
B(z1,t1),...,B(zj_1,tj-1). Luego se escoje (z;,t;) tal que 3t; > M;. Este proceso termina luego
de un namero de pasos. Entonces, para (z,t) € E(e, M), se tiene que B(z,t) intersecta a algin
B(z;,t;), particularmente, si j es el menor indice para el que ocurre, se tiene que t < M; < 3t;, y
que B(x t) C B(zj,3t;). Ahora, se define

E'(e, M) := {(z,t) : B(x,t) C B(2',t), (2',t') € E(e, M)} C U{(x,t) : B(z,t) C B(xj,3t;)}.

Por lo que se tiene que

w(E' (e, M)) < ZM{ x,t) : B(z,t) C B(z;,3t;)}
< Zu (xj,3t5))
DIE = Il ae.

Ademés, cuando £ — 0, y M — o0, se tiene que E'(e, M) crece al conjunto {|f| > r}. Finalmente, sea
X la funcion indicadora del conjunto {||f||x < ro}, para descomponer f = fx + f(1—x) =: f1 + fo.
Como f; < ro, entonces fo > (1 — o) cuando f > r. Por lo que se tiene que

o0 ~ 1 o0
[ ordifisnars = [ o a
0 —0Jo J|fllx>ro
1
= / / rP72| f| dr dz
L =0 Jrn Jo<r<|flix/o
ol-p /
= % dz
0= —1) Jo M1
/ If\pduS/llfH?cdw,
QXR+ Q

donde o < 1 puede ser escogido a conveniencia. Entonces, se concluye que

/ 1P du < / P du < / 1 £]1% da.
QXR+ QXR+ Q

Lo que concluye la prueba. O

Teorema 5.6.10 (Definicion equivalente del espacio de Hardy H'). Para toda f € H'(Q;X),
con Q = R™ T, existe una funcion F := (ug,...,uy) tal que satisface las ecuaciones de Cauchy-
Riemann en  x Ry.. Ademds,

[ suwl#G.0lds S 17,
Q >0
y limy o uo(w,t) = f(x) casi en todas partes, y en norma L'.

Demostracion. Definase a ug := Pf, y u; :== P(R;f), que estan bien definidas como R;f € L.
Ahora, recuerde las derivadas de las integrales de Poisson

P(R; f)(z,t) = {27r|§f )i, 2m|s|}

O, P(R; f)(,t) = {2m§kf éﬂ| —2ﬂtlél}

Entonces, Y dju; =0, y 0jui, = Opu;. Ademas, lim,_,o u;(z,t) = R, f(x) casi en todas partes y en
norma L1 La comparaciéon de normas es resultado de esta convergencia. O
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Nota 5.6.11. En realidad la relacién anterior es una doble implicaciéon. Para cada F' cuyas componen-
tes satsifagan las ecuaciones de Cauchy-Riemann, y que ||F|| g1 < 0o, se puede encontrar una funcion
f(x) := lim;_,ouo(x,t) en el espacio H'. Esto implica demostrar que los limites no-tangenciales de
estas funciones existen casi en todas partes y que las componentes u; son integrales de Poisson de
medidas finitas. Entonces, se tiene una definicién alternativa para el espacio de Hardy H'(£2; X) con
normas equivalentes. Mas aun, es posible definir mediante estas funciones F', los espacios HP para

p < 1, mediante la cuasi-norma
1/p
|E||z» := sup (/ |F(z,t)|P dx) .
t>0 \JQ

Para un tratamiento mas detallado, vea Stein [33].

Definicién 5.6.12 (Espacio de funciones de oscilacion media acotada BMO). Para f € L}, (Q; X),
se define el operador p-maximal sharp como

# 1 P 4 Y/
M f(a) = s <|Q| /Q 1£() — Foll% y> ,

donde fq es el valor promedio de f sobre el cubo Q. Cuando p = 1, se suele denotar f#. Se dice
que f pertenece al espacio de funciones de oscilacion media acotada BMO(Q; X) si se tiene que
f# € L>®. En ese caso se define la norma

I fllBmo = | fF#]| L=

En realidad, se toma el cociente respecto a funciones constantes para que la definicion de norma sea
adecuada.

Ahora, se presenta una norma alternativa que no requiere del célculo del valor promedio fg.

Proposicién 5.6.13 (Version alternativa del operador maximal sharp). Para f € L}, (9 X), se
tiene que

1, . 1/p 4
5/\/lp flz) < sup 1nf (|Q/ |f(x) —bl% dx) < M f(x).

Demostracion. Para la cota superior basta tomar b = fg. Para la cota inferior, se tiene que

(o~ set dm>l/p SJUALCR: d””)l/p + (1= ol dx>1/p

1/p
_ ( /Q 1) — bl dx) L1M7 - follx

<2 ( /Q () - bl dx)w.

Lo que completa la prueba. O

Nota 5.6.14. El resultado anterior, permite entonces utilizar la definicién equivalente

1/p
Mg )= sup ot ([ 150 = i )

»beX

El operador maximal sharp, tiene una relacion interesante con el operador maximal de Hardy-
Littlewood.

Teorema 5.6.15. Para f € L} (€ X), se tiene que f# < 2Mf.
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Demostracion. Basta con ver que

1 1
— - d — d .
|Q|/Q||f follx dz < |Q|/Qf”X z+ | follx <2(1flx)e

El resultado se obtien tomando el supremo. O

El resultado converso se tiene en norma y se debe a Fefferman y Stein [21].

Teorema 5.6.16 (Fefferman-Stein). Sea f € LP°(Q; X), y sea 1 < p < oo, donde 1 < py < p.
Suponga que f# € LP(QQ), entonces se tiene que

IMfllLe < Coll | Lo,
donde M es el operador mazimal de Hardy-Littlewood, y C, solo depende de p.

Demostracion. Se aplica la descomposicion de Calderén-Zygmund (vea el Teorema [5.1.27) para
obtener una susecién de cubos diddicos {Q}} tales que || f(z)]|x < X, para z ¢ U; @}, y que

1
A< —/ £ (2)]lx dz < 27
Q71 o>

Ahora, se puede ver que si ayz(\) := |{|g| > A}| es la funcién densidad, entonces af()\) = |Q*| =

’U y Q;“.Entonces, se busca probar
2 —n—1
af(N) <apx(NA)+ Zaf(2 A, (5.6.1)

Para ello, se fija Qg = Q;‘Tnfl. Si se tiene que Qo C {f” > \/A}, entonces, es trivial que

1@ < > AMAYN Q.
Q7CQo

En caso contrario, por definicién se tiene que

1
|QO|/Q 1 = faollx do <

Por otra parte, | fo,llx <2"(27"7I\) =\/2,y (||f||X)Q; < \. Entonces, se tiene que

>

A
[ 7= o lxde= 510,
QF
donde Q;‘ C Qo. Entonces, se tiene que

2
A
E Q7] < Z|Q0|'
Q;‘CQD

Se obtiene (5.6.1) al sumar sobre todos los cubos Qq. Ahora, note que si z € Q7, entonces
1
Mf) 2 o [ e de > A
‘Qj ‘ Q?}

y ag(A) < amy(A). Ademés, se define 2Q como el cubo concentrico a Q7 tal que £(2Q7) = 20(Q}),
y se fija x ¢ | ZQ?. Sea @ cualquier cubo que contenga a x, entonces

/ 1F@)lx dy = / 1F()lx dy + / 1) lx dy = I + L.
Q QNQ*> QN(Q\Q™)
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Note que I < A|Q|. Para Iy, vea que si QN Qg\ es no vacio, entonces Qg\ C 4Q), dado que Q ¢ 2Q§‘
implica £(Q) > £(Q}). Por lo que

ne Y[ Wwixars Y Qi <2

Q3 C4Q Q3 C4Q
Entonces, se puede concluir que
27 %ans[(1 +2"4")A] < ap(X) < anmp(N). (5.6.2)

Por otra parte, se define
N N
In ::p/ )\p_laf()\) dr < p/ )\p_laMf()\) dA.
0 0

También, se sabe que si py > 1, entonces Iy < ||[M f|zr0, ¥ que si pg = 1, entonces app(A) S A1
(vea el Teorema [5.1.29)). En general, se tiene que Iy < co como f € LP. Por ([5.6.1) se tiene que

N N
2
In Sp/o N lape (A/A) dA + Zp/o AP Lap (27" IA) dA

N 2 N2~
< [ ageane Zee [

0 0

2

< Apllf# e + 2P Ly

Por lo que, si se escoge A = 4-2("+tDP se tiene que Iy < 4-2("+DP|| f#| .. Finalmente, se concluye
que

N
7 =p [0 ey () dA
0
<2"(1 +2"4”)*Pp/ ML (A) dA
0
=2"(1 4 2™4™) 7P lim Iy < Cpl|f#]|1s,
N—o0
con C), = 2"(1+2"4")~P4.2("+1)P_Se puede ver que la constante solo depende de n y p, concluyendo

la prueba. O

A continuacién se presenta el resultado clasico de Fefferman [19], y la demostracion se guia de la
presentada en su trabajo con Stein [21].

Teorema 5.6.17 (Fefferman). Suponga X’ satisface la propiedad de Radon-Nikodym. Entonces, el
dual de H*(€; X) es BMO(; X'), con Q = R", T". Esto puede entenderse de la siguiente manera

1. Para ¢ € BMO, el funcional f — [, ¢(z)f(z)dx es acotado en H*.

2. Para cualquier funcional continuo en H', se comporta como el funcional en (1) para una tinica
funcion ¢ € BMO.

Para ello, se enuncia este teorema auxiliar.
Teorema 5.6.18. Para Q = R™ T", los siguientes enunciados son equivalentes
1. ¢ pertenece a BMO(Q; X),

2. 0=+ 2?21 Rjpj, donde @o, ... ,on € LX),
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3. se tiene que

()]l x dz
o 1+ [z

)

Y que

swp [ VPl dede S
20€Q J T (20,h)
donde 0 < h < 00, T(xo,h) := {(z,t) : 0 <t < h, |x —x0| < h}, y Py su integral de Poisson.

Los dos teoremas anteriores se demuestran en conjunto de la siguiente manera: Teorema
= Teorema [5.6.18(2) = (1) = (3) = Teorema [5.6.17]

Demostracion. (Teorema = 2) Sea B := @""" L'(X) el espacio de Banach con la norma dada
por ||(fo,---, fn)ll == D |IfjllL:. Entonces, sea S el subespacio en el que f; = R; fo, que claramente
es cerrado y que es isométrico a H' mediante el mapa fo — (fo, R1fo,- -, Rnfo). Entonces, por el
Teorema Hahn-Banach, cada funcional continuo definido en H!, puede ser extendido a un funcional
continuo en B, cuyo dual es EB”H L (X"). Es decir, para cada funcional T continuo en H?, existen
©0, - -, on € L®(X'), tales que

T(f):/Q(pofdx—l—Z/ngj(ij)dx

Por otra parte, se tiene que por la transformada de Fourier cuando 2 = T™,

/Tnsoj(ij)dx:/ @ Z/ﬂ Zg e dy | de

=4l

gen

- / Ripi(y)f(y)dy.

El caso 2 = R™ es analogo. Por lo que cada funcional continuo T se puede escribir como

T(f) :/Q ®o —ZRJ'%‘ fdz.
=1

(2 = 1) En vista del inciso anterior, basta con demostrar que para cualquier ¢ € L, se tiene que
Rjp € BMO. Para un cubo @ de diametro o, sea ¥, la funciéon indicadora para puntos |z —zg| < 20,
para descomponer

e =px+e(l—x)=¢1+p2

Entonces, se tiene que R/Jal(ﬁ) = i&;01(£)/|&| v por la desigualdad de Holder e identidad de Plan-
cherel

1 _ 1o~
|Q|/Q 1Rj1llx dz < Q12| Rjeullre < 1QI211lze S Nl (5.6.3)

Por otra parte, se puede verificar que la transformada de Riesz, equivale a la siguiente convolucion

T; —Yj
Rif)(z)=(K;* f)(z ::/jify dy.
(R, f)(x) = (K * f)(x) Q|x—y|n+1()
Ahora, por el Teorema del valor medio, se tiene que

|Kj(z —y) = Kj(zq —y)| < |z — zq|sup |[VK;(2)],
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donde z se encuentra entre z —y, y o — y. Ademds, se tiene que |VK;(z)| < |z|"*!. Ahora, para y
en el soporte de w3, vy x € @, se tiene que

ly =z > |y —zq| = |zqg — 2| = |zq — |.

Por lo que |z| 2 |zg — y| y se tiene que

I(Ryea)(@) ~ (Rgo)(ao)lx S o [ el gy .. (5:69)
lzg—y|>20 |xQ - y|

Escogiendo b = (Rj¢2)(zq) en la norma equivalente en BMO se tiene que
1
[R;¢llBMO S sup IQ/Q 1(Rjp2) (@) = (Rjp2)(2Q)llx + [ Rjpr(2)l x dz S [lepl| oo -

(1 = 3) Sea @ el cubo de lado uno centrado en el origen, y Q el cubo de lado 2* con el mismo
centro. Entonces, se tiene que

Por lo que [|¢g, , — vo.llx <2"||l¢llmo, y se tiene que

< [ lel@) = poulx do < 2 lovio.

/ lo(2) - v, ] dx
Qr—1

|| Iet@) = pollx do < 241 + 2K lavio.

Qk

Particularmente, se obtiene que

xXr) — xr) —
/ () fflﬂx de/ () k(ffll)lx de
Qr+1\Qk 1+ |CL" Qr+1\Qk 1+2

2nR (1 427 (k + 1)]
= 1 4 2kntk

llellBymo-

Por lo que sumar todas las expresiones de este estilo resulta en

le(z) = pallx

dz < < 0.
S g z S llellsmo < oo

Para el segundo estimativo, fije o = 0, y sea @ el cubo centrado en el origen, de lado 4h. Sea x
su funciéon caracteristica y x la de su complemento. Entonces, se descompone a ¢ de la siguiente
manera

=0q+ (P —9q)x+ (¢ —pQ)X = ¥1 + Y2 + 3.

Primero, ¢1 es constante y no aporta a la norma del gradiente. Por la identidad de Plancherel se
obtiene que

/ HIV (Pia) (e, )% dardt < / / HIV (Pio) (. 1) % da dt
T(0,h) 0 Q

2
dt
L2

— [ s|@©nleteeme
0
1,

= 1Bl

- /Q lo(@) — vollk dz < B llEro.
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por los calculos realizados en el inciso anterior. Por otra parte, sigue que

IV (Pes) (. D) x < /Q VP — )llles@)lx dy

1 n+1
S P —T le(y) — eqllx dy.
/Q\Q [t+|$—y|} N

Pero, para (z,t) € T(0,h), y € supp p3 se tiene que

1 n+1 1
[t + |z — yl} ~ Rt 4yt

v que ||[V(Pp3)(z,t)||x < h7t|ellsmo- Finalmente se concluye que en realidad

sup / tIV(Py)(z,1)|% dzdt < h"[|¢llemo-
€N T(Io,h)

(3 = Teorema 5.6.17) En vista del Teorema basta demostrar que para f € H'(X) apropiado
se tiene que

oo
[ [aveenvenidea < .
0o Jao
Ademas, en vista del Teorema [5.6.10| se tiene que existe F' = (ug, ..., u,), que satisfacen las ecua-
ciones de Cauchy-Riemann generalizadas, tal que ug(z,0) = f(z), y que gracias a un argumento de
densidad, decae rapidamente en el infinito. También, se puede requerir sin pérdida de generalidad

que |F| > 0,y que A(|F|) = O(|z| +t + 1)""7? en su dominio. Entonces, el lado izquierdo de la
expresion anterior puede ser acotado por

[ [avealeivenixaas [* [ 19@olevriaa

%) 1/2 00 1/
< (/ /t||V(P<p)||§(,|F|dxdt> (/ /t|F|‘1|VF2dxdt)
0 Q 0 Q

Ahora, por el Lema [5.6.3] se tiene que

/ /t|F|*1|VF|2dxdt5/ /tA(|F(x,t)\)dxdt
0 Q 0 Q
= [ IP@0lds <11

2

por el Teorema de Green. Por otra parte, se define g(x) := |F(z,0)|?, con ¢ = (n — 1)/n. Entonces,
por el Lema se tiene que A(|F|? — Pg) > 0 y como Pg = |F|? en la frontera, el principio
maximal implica |F(x,t)| < [(Pg)(x,t)]?, donde p = 1/¢ > 1. En particular

lollz, < / F(2,0)|dz < || e

Entonces, el término restante puede ser estimado utilizando el Lema con dy = t||V(Py)||%, dz dt.
En efecto,

/0 /Q HIV (Po) %0 | F| der dt < / /Q HIV () |30 | Pgl? d dt < llgls < 11
0

Lo que concluye la prueba. O
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Nota 5.6.19. En esta demostracion se demostré en (1 = 3) una propiedad de la conocidafuncion-g
de Littlewood-Paley, que se define como

9(f)(@) == </OOO IVPf(z,t)% dt>1/2.

En particular, se demostro que ||g|lz2 ~ ||f|lL2-

Para concluir, se presenta una definicién alternativa del espacio de Hardy H'. Aqui, se adapta
el caso p de la prueba general presentada por Stein [34].

Definicion 5.6.20 (Espacios de Hardy atomicos HE;?). Sea p < 1. Se le llama (p, q)-dtomo a una
funcion a : 2 — X, con Q = R", T™, soportada en una bola B, que cumple que

lallza < [BIY=Y7, / Pa(z)dz = 0,
Q

con 0 < |B| <n(1/p—1). Ademas, se dice que f € HY?(Q; X) si existe una descomposicion atémica,
es decir una sucesion de atomos {a;} que satisfaga

f:Z/\jaj, Z|)\j|p<oo.
J J

También se define la norma

1/p

[ £l gz o=t Q[ D7 A07 FEDIRNT
7 7

Teorema 5.6.21. Se tiene que H*(; X) = H:®(Q; X), con equivalencia de norma.

.. 1, . . . .
Demostracion. (H* — H,;>) Para esta direccion, basta con ver que los dtomos tienen norma H'?
uniforme. Primero, por (5.6.3), se tiene que para un (1, 00)-atomo a relacionado a una bola B(z, o)

[ IRsele)lx do S B0 ol < C.
B(z,20)
Ahora, por (5.6.4), se tiene que para |z — z| > 20,
/ |Kj(y — ) — Kj(z —x)|dx < C.
Q\B(z,20)

Ademaés, por la propiedad de cancelacion

/ IRjallx do = [
Q\B(z,20) Q\B(z,20)

s/ ||a<y>ux/ K@ —y) - Kz — )] dedy
B(z,0) Q\B(z,20)

dz
X

/ a(y) [K;(x — ) — K — )] dy
B(z,0)

<C lla(y)llx dy < C.
B(z,0)

En conclusion ||R;al|;r < C, y esto permite asegurar la convergencia en H'! de la serie de atomos,
y que para cualquier € > 0

e <D llagle S >0 1< e, + <.
i i
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(H ;,;OO < H') Para la construccion de los 4tomos, se aplica la descomposicion de Calderén-Zygmund
aMf:=|fllx +X IR;fllx, al nivel A = 2™, para obtener una susecion de cubos diadicos {Q}'}
tales que

9m < Mfdx < 2mtm,

Q] Jop
Uer
k
y six ¢ Q™, entonces M f(x) < 2™ casi en todas partes. Entonces, se definen

9" =0 =xom)+ D fropXyaps "= D b= (= fiapxiar
k k

k

Q™ = S 27 IM Sl = 27" [ f s

Por lo que, para x € Q}, se tiene que

4+
X

on
Ki(x —y)—=+ dxd

27l
gn&ﬂu+—ﬁ;/'n&f@wxw
|Qk | Q'

SR fllx + (IR fllx)ep| S IR fllx +27™ S M.

Hij}yHX < Kj(x_y)f%Q;cn dy

Qy

/ Kj(z—y)f(y)dy
Qr

X

<|IR;flx +

X

Ahora, cuando x ¢ Q}*, se aprovecha el hecho que [b* =0, para tener que
R = [ K (2 = 9) K (o — gy )] o

Aqui, zgr es el centro del cubo. Por un argumento similar al de 1) se tiene que

K(Q?)Hf(y) - lem ||X g(Qm) K(Qm)nrl»l
|Rbm| S/ 3%k dy < 2(||f||X)l w17]@|Qm| 5 ontm_\¥k)
o QL" |J’. - $Q2L|n+1 2@k ‘SC — .’EQ']rcn|n+1 k |.’17 _ mQZL|n+1

Por lo que
/ MY dx = M dx + M dx
@ o o\Qp
Y/ m\n+1

<[ Mfdz+ / gm% de
Qr lo—aop >6@p) 1T~ TQy]

<[ Mfda+2me(Q)"
Q!

hS Mfdx +2™Q < Mfda.
Q! Qy

Por lo que se tiene que

([0 | 2 SZ/sz”dng/ Mfdxg/ Mfdz — 0,
PR E YR Qm

cuando se hace m — oo, dado que Q™ = {M [ > 2™}. Equivalentemente, || f —¢™| g1 — 0. Ademas,
como g™ — 0 cuando m — —oo, se tiene que

F= 0" =™ =Y (g™ = g™ xap,

meZ meZ k
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como ¢gMmt! — g™ = b™ — b™t! que se encuentra soportado en Q™. Ahora, se define B como la
menor bola que contiene al cubo Q7", y como ||g™! — g™ | x < C2™, se definen

A= C2™| B, a = (AP)” (bm me“),

donde los ¢ son aquellos tales que QmH C Q7. Esto esta bien definido dado que son cubos diddicos,
y que >, Alalr = g™t — g™, Asimismo, se tiene que [|a}’||z~ < |Bf*|7'. Se puede ver que estos
aAtomos también cumplen la propledad de cancelacion

amdx:/b’”dx— /bm“dx:o.
/Q k Q g ; Q ¢

Ademaés, se tiene que los coeficientes cumplen que
DSARIS Y 2MBE S Z2m|{Mf > 2" S IIMFlley = 1l
k,m k,m
Por lo que, se obtiene el resultado deseado. O

Teorema 5.6.22. Se tiene que HY1(Q; X) = HY"(Q; X), incluso cuando q # .

Demostracion. Sin pérdida de generalidad suponga que ¢ < r, entonces para cualquier (p, r)-atomo
a, se tiene que por la desigualdad de Hdolder

1/q
1 1 _ . _
lall e = ( /B an%(dx) < Mlall% 2% Ix sl Sy = llallo-|BIY4 Y < |B|Yat/e,

Por lo mismo, se tiene que H?*>* «— HP" « HP9 — P! y basta demostrar que HP*! — HP»*° En-
tonces, tome un (p, 1)-atomo a, soportado en B y apliquele la descomposicion de Calderén-Zigmund
a ||al| x, en los niveles A = 2™, para obtener, como en la prueba anterior, sucesiones de cubos {Q}'},

y de funciones
"i=at ) dixep, UM =D 0 =) [a—c'lxep,
k k k

donde las ¢} son funciones tales que para la bola B}* = B(z,0), se tiene que

6

Z ck:ﬁ XBps

1BI<s

donde s = n(1/p—1) y los cj; se escogen de tal manera que satisfaga las condiciones de momentos.

Es decir 5
Ig;::/m(:r—z adx—ch/n (x —2) xgilz)dx,
k |B1<s

para cualquier |a| < s. Estas integrales se pueden estimar como
ollada

HIIZLXHX < < 2”2m0.|0¢||B]'::n|

Bm™

k X

Ahora, tome la matriz de de momentos para la bola 5},

x—z)P
M(B})ag ::/ (m—z)audm,

" 3!
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Se puede ver que esta puede expresarse como ol**# H‘"MM;, en terminos de la matriz de momentos de
la bola unitaria. En particular, como D, M D,c", donde D,, es diagonal con entradas (D, )qa = olol.
Entonces, al invertir, se obtiene que

M(B;")™" = Dy/eM ™ 'Dy 0",
y se pueden estimar como
(M(BF") Mgl < (M) aplo™ o= < ¢, jolothlmn,

Por lo que
lesllx < 3 Cuuoletomm 3 amalel By < € 270191,
lal<s

Esto implica que [|b}*||z~ < CJ/,2™. Por lo que se definen
apt =0y = > byt
¢

donde los ¢ son tales que Q;”H C Q}, los cuales estan bien definidos dado que son diddicos. Ademas,

se tiene que
Zd? —pm — bm+1 — gm,+1 _ gm.
k

Entonces, se tiene que [|a}* ||z < [lg" T — g™ | e < C2™ y se pueden definir los atomos como
NP = CMBRYP, g = ()l
Se tiene que los coeficientes cumplen
SN S 2 2IQE] = S 2 lallx > 2l % | Jalf .
k,m k,m m B

Ahora, como p < 1, se tiene que por la desigualdad de Jensen

dx dz \*
apdx:B/apr(/a ) <1.
[ Nalfcaz = 15| [ alfer <181 ([ lallx i

Lo que completa la prueba. O

Nota 5.6.23. Por lo tanto, se suele definir el espacio HY,(£2; X) como el espacio H?4(Q; X), para
todo 1 < g < co0. Generalmente se denotan como el espacio HP, que también puede ser definido en
términos de operadores maximales, vea Stein [34].

5.7. Interpolacién entre espacios

Anteriormente, se han aprovechado resultados de interpolacion, que permiten demostrar las pro-
piedades para un par de espacios y como consecuencia obtener los resultados para los espacios
‘intermedios’. Ahora, se considera un caso muy importante para el analisis armoénico y se presenta
la teorfa de interpolacion compleja.

Definicion 5.7.1 (Parejas de espacios). Sean Ag, y A; espacios de Banach. Se dice que estos
son compatibles si existe un espacio topolégico de Hausdorff que los contenga como subespacios,
y se denota a la pareja de espacios como A := (Ag, A;). Ahora, se define el espacio interseccion
A(A) := AgN Ay, con la norma

lall acay := méx{]|all ao, lall 4, }-
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Ademas, se define el espacio suma X(A) := Ay + A, con la norma

Ha”z(Z) =

if (laolla, + flar]a,).
1

No es complicado demostrar que estos espacios también son de Banach. Por otra parte, se define
un mapa entre parejas T : A — B como un mapa lineal continuo T : 3(A4) — X(B), tales que sus
restricciones T'| 4, + Aj = Bj son mapas lineales continuos para j = 0,1. En consecuencia se tiene
que

HTHA(Z),A(E) < mé‘X{HT”AO’Boﬂ ”THAl,Bl}?

”T”Z(Z),E(E) < méX{HT”Ao,Bm ”T”Al,Bl}'

Definicién 5.7.2 (Espacios intermedios y de interpolacion). Sea A := (Ag, A1) una pareja com-
patible, entonces A es un espacio intermedio respecto a A si A(A) C A C L(A). Ademas, se dice
que dos espacios intermedios A, B respecto a A, B respectivamente, son espacio de interpolacidn, si
T:A — Bimplica T : A — B. Si ademaés, se tiene que

1T 4,8 < Cmdx{|[T]| 40,5 [T 41,5, },

se dice que son espacios de interpolacion uniformes, y cuando C' = 1 se dice que son espacios de
interpolacion exacta. Sea 0 < 0 < 1, entonces se dice que A, B son de exponente 0 si

-0 0
1Tl a8 < CITI, B I TS, 5, -
Ademas, si C' = 1, se dice que son de exponente exacto.

Nota 5.7.3. Se puede ver que lo que en realidad se defini6 es una categoria cuyos objetos son las
parejas compatibles y sus morfismos los mapas definidos anteriormente. A continuaciéon se definen
los functores de interpolacion.

Definicion 5.7.4 (Functoi de inierpolacién). Se dice que F es un functor de interpolacion si para

parejas A, B, entonces F'(A), F'(B) son espacios de interpolacion. Ademés, se tiene que F(1) =
T|F(Z) paraT : A — B.

Ahora, se presentan las particularidades del método de interpolacion compleja.

Definici6én 5.7.5. Dada una pareja A de espacios de Banach, se define a F(A) como el conjunto de
funciones f : C — X(A), tales que son continuas y acotadas en la banda S := {z € C: 0 < Rez < 1},
y que son analiticas en el interior de la misma. Ademas, se requiere que el mapa ¢t — f(j + it) sea

continuo en A; y se desvanezcan cuando ¢t — oo, para j = 1,0. Ademas, se define la norma

1flls := max{sup || f(it)[| aq, sup || f (L + it)]| a, }-

Se puede verificar que es un espacio de Banach. Por otra parte, se define el functor de interpolacion
Ajg) = Cp(A) como el espacio de vectores a € X(A), tales que a = f(#) para algin f € F(A).
Ademaés, se define la norma

lallfg) := mf{|[fl[5 : £(0) = a}.

Teorema 5.7.6. FEl espacio Z[g] es un espacio de Banach y es un espacio de interpolacion the
exponente exacto 0.

Demostracion. Es claro que el mapa f + f(6) es continuo desde F(A) hacia X(A), dado que
£l < [If|lz- El kernel de este mapa es el conjunto Ny := {f : f(f) = 0}. Entonces, A es
isomorfo e isométrico al cociente §/Ng. Ademés, como N es cerrado, se tiene que es un espacio de
Banach. Ahora, se tiene que ||lals = || f(0)[|s < ||f]5, que implica que Ajg) C X(A). Asimismo, sea

f(z) =",
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que implica que A(A) C Z[g]. Entonces, es un espacio intermedio. Por otra parte, suponga T mapea
a Aj en B; con norma M;. Dado a € Z[g], y dado € > 0, existe f € F(A) tal que f(f) = a y que
Il fllz < llalljg) + €. Entonces, sea

g(2) = Mg~ ' M{*T(f(2)),
que pertenece a §(B). Ademas, ||g|lz < ||flz, pero g(8) = MI~ My T (a) y se concluye que
ITally < Mo ="M llglls < My~ MY fll5 < My~" MY (llallpg) + €)-
Lo que concluye la prueba. O

Ahora, se puede expresar el Teorema de interpolacion de Riesz en el lenguaje que se establecio
anteriormente.

Teorema 5.7.7. Sean 1 < pg,p1 < 00, entonces para 0 < 0 < 1 se tiene que
1 1-6 0
= +

(LPo, LPY) g = LP,  con — —.
p Do p1

Y este se extiende al caso de espacios pesados, vea Begh y Lofstrom [4]

Teorema 5.7.8. Suponga que 1 < py,p1 < 0o. Entonces, para 0 < 0 < 1 se tiene que
(LP° (wo), LP* (w1))je) = LP(w),

donde 0 0 Geor e
1 1— rl=0)  po
= +— ¥y w=w, " w.
Do b1

Ahora, se presenta el resultado de dualidad de interpolacion compleja que permite explotar el
hecho que BMO es el dual de H'.

Teorema 5.7.9. Sea A := (Ag, A1) una pareja compatible de espacios de Banach tales que A(A) es
denso en ambos espacios y al menos uno de los espacios es reflexivo. Entonces

(A()7 Al)f&] = (A67 All)[9]7
con igualdad de normas.

Este resultado no se demuestra, ya que se encuentra fuera de los alcances de este trabajo, pero
se recomienda revisar Bergh y Lofstrom [4]. Por otra parte, se presenta el resultado que permite
realizar interpolacién utilizando el espacio H' y el espacio BMO.

Teorema 5.7.10. Sea 1 < p < 00, entonces se tiene que para funciones Q@ — X, con @ = R™ T",

/ / 1
(BMO, L? )iy = LT,  con 721—94—@
q p

st ademds, X' cumple la propiedad Radon-Nikodym, se tiene que
(H',LP)jg = L9

Sin embargo, para los intereses de este trabajo, se demuestran el siguiente corolario, cuya prueba
directa contiene las ideas generales del resultado anterior.

Corolario 5.7.11. Sea z — T, un mapa de la banda cerrada 0 < Rez < 1 a operadores acotados en
L?(Q; X), con Q = R™, T". Suponga que el mapa es continuo y acotado en la banda, y analitico en
su interior. Ademds, fije Il] =1- g, para 0 < 0 < 1.
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1. Suponga que X' cumple la propiedad de Radon-Nikodym,
sup | Tiy fllzr < Mol flles, fe€L®nH!
ye

SUE | Titigfllze < Myl fllzz, f €L
ye

Entonces, se tiene que
I Tofllce < Mol|fllze, [ L*NLP.

2. Suponga
sup || Ty fllemo < Mol fllze~, fe€L?*NL>
yeR

sup | Tiqiy fllr2 < Myl fllz, f €L
yeR

FEntonces, se tiene que

”Tb‘fHLp/ §M0||f||Lp'v feLQOLp/.
Donde My solo depende de My, My, y 6.

Demostracion. La prueba del primer inciso contiene incluida la prueba del segundo inciso, gracias
a la propiedad de dualidad entre H' y BMO. Asi que suponga las hipotesis del inciso (1). Sea S, el
dual (en L?) del operador T, es decir

/Q gT.(f) dz = /Q S-(g)f da,

para f € L?(Q; X), g € L%(£; X'). Entonces, se tiene qu el mapa z + S, es continuo y acotado en
la banda cerrada, y analitico en su interior. Ahora, para g € L2NL>®,y f € L? N H', se tiene que

<NT-iy fllzrxllgllnee (xry < Mol| fll e x|l Loe (x7y-

‘/Qsiy(g)fdx = ‘/QEJT—iy(f)dx

Entonces, se tiene que S;, g, es la restriccién de un funcional acotado en H'(X), por lo que en vista
del Teorema se tiene que ||Siygllemo(xr) < CoMollg|lL=(x)- La dualidad de L? permite un
argumento similar para asi concluir |[Siy,gllz2(x/) < Mi||gllz2(x7), ¥ que S. cumple las condiciones
del inciso (2) para X’'. Asi que se demuestra ese inciso, y las normas a partir de este momento
son respecto a X'. Ahora, sea z — Q(z) una funciéon medible que mapea puntos a cubos que los
contienen, y sea n(z,y) una funcion medible en Q x Q, tal que |n(z,y)| = 1. Ademas, se define el
operador

1
V-0)@) = /Q W)~ Faolate)dy

con F' = S.g. Note que sup |U,g(z)| = F#(z), si el supremo se toma sobre todas las funciones @
y 1. Ademas, como ||F#| 2 < 2|MF| 1> < C1||F||2 (vea el Teorema , entonces se tiene que
la funcion z — f U.(g)f dx es acotada y continua en la banda cerrada, y analitica en su interior.
También cumple que

1Uiygllz= = [F#|| = [|F|lemo = ISiygllmo < CoMollgllr=, g€ L*NL™,
1Urriygllze = |IF7 |2 < CillF |22 = Cil|Sitiygllze < CiMullglze, g € L2,
Por el Teorema de interpolacion de Riesz-Thorin (Teorema [5.1.7)), se tiene que

- 1 0
1Usgll o < (CoMo)*~*(C1M1)° gl o piatl



CAPITULO 5. PRELIMINARES 52

Como esta cota no depende de las funciones @ o 7, entonces se puede tomar el supremo y obtener

que
IF#( o = 11(Se9)# || o < (CoMo)' =" (C1 ML) [|g] 1o -

Al aplicar el Teorema[5.6.16] se obtiene que
15691l Lo (x1y < IM(Seg)l o < Corl(Sa9)# | o < Copr (CoMo)' = (C1 M) || gl o (xc1)-

Por lo que se obtiene el resultado del inciso (2). El inciso (1) se completa mediante un argumento
de dualidad, ambos con My = Cp (Co M) =% (Cy M;)?. O
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Operadores pseudo-diferenciales

En esta seccion se presenta la teoria de operadores pseudo-diferenciales con simbolos en las clases
de Hoérmander, como ha sido desarrollado por Ruzhansky y Turunen [31].

6.1. Definicién y propiedades basicas en R"

Definicién 6.1.1 (Clases de simbolos de Hérmander ST’ (R" x R"™)). Sean 0 < 4, p < 1. Se dice que
a € Sg:”&(R” x R™) si a:= (z,) es suave en R™ x R™ y cumple que

|070¢ a(z, )] Sag (€)1,
para cualesquiera multi-indices «, 8. Se dice que estos simbolos tienen orden m € R.

Definicion 6.1.2. Sean 0 < §,p <1 yseaa € ,’)’fé(R” x R™). El operador pseudo-diferencial con
simbolo a := a(z, ) se define como

~

Lf(a) = [ ale,F) de

donde f € S(R"). La clase de operadores pseudo-diferenciales con simbolos en S7"(R" x R") se
denotan por W' (R™ x R™).

Proposicién 6.1.3. Para a € S)'5(R" x R") y f € S(R") se tiene que T, f € S(R™).
Demostracién. Note que como f € S(R™), se tiene que

08a(x,€) f(€)] S (€)m+oIPl(e)~N,

para algin N > 0 apropiado, por lo que todas sus derivadas respecto a x son absolutamente conver-
gentes y se tiene que T, f € C*°(R"™). Ahora, se define el operador

Le == (1 +4m%z)*) " (I - L¢),
donde L¢ es el laplaciano. Note que Lg(ez’”"”f) = 2™ v por integracion por partes se tiene que

71w = [ @<Lt O f(e) e

Por lo que |T,f(z)] <y (z)~2Y para cualquier N y se concluye que T, f decae rapidamente. Este
argumento se puede aplicar para cualquiera de sus derivadas y se obtiene que T, f € S(R™). O

53
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Ejemplo 6.1.4 (Operadores diferenciales). Sea P := Z|a\§m 0o (x)0% un operador de derivadas
parciales. Entonces, al considerarle como un operador pseudo-diferencial se tiene que su simbolo es
simplemente su polinomio caracteristico p(z,§) = 3|, <, @a(x)(27i€)®. Si las funciones coeficientes
a. son continuas, este simbolo pertenece a la clase de Hormander de orden m.

Nota 6.1.5 (Kernel de un operador pseudo-diferencial). Se puede reescribir la definicion de operador
pseudo-diferencial de la siguiente manera

T,f(x) = / e a (i ) F(€) de

L/n/nQ““ V€a(e, €) f(y) dy dé
—/}Mzwﬂ>@,

donde se define en el sentido de distribuciones al kernel de Schwartz del operador pseudo-diferencial
como

) = [ e afa,g) de

Teorema 6.1.6 (Composicién de operadores pseudo-diferenciales). Sea 0 < § < p < 1, sea a €
;”g (R™ xR") y sea b€ S7'3(R™ x R"). Entonces, existe un simbolo ¢ € Sm1+m2 (R™ x R”) tal que
=T, 0T,. Ademds, se tiene la formula asimptdtica

¢~ Z%@ 0)(5°h).

[e3%

Es decir, para cualquier N > 0, se tiene que

o= 3 T gray(aan) € ST e-ON (Re « RY).

la|<N

Demostracion. Fije un zg € R™ y sea x € C§°(R™) tal que supp x C {z € R™ : |[x — xo| < 2} y tal
que x(z) = 1 para | — x2g| < 1. Realice la descomposicion

Entonces, se tiene que
TuoT)f@) = [ [ e mateay [ [ @m0 .0)5(:) azagayan
— [ e [ [ men OO, b (5, dy dg () de e,
donde se aprovecho que (x —y) - (n—&)+(x—2)-E=(x—y) -n+ (y— 2) - & Por lo que se define
o(x,€) = / / A= =S a(z, )by (y, €) dy dn
= [ et Oaa b (n - €.€) dy
= [ emtaten + O €) dy

Como b; tiene soporte compacto en z, se tiene que b; es de decaimiento rapido uniformemente en &

y que R
b1 (. )| Sar ()= (€)™,
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para todo M < 0. La expansion de Taylor en la segunda variable de a(z, £ + 7)) resulta en
1
awE+n)= Y —0%ale, " + Ry(w,&n),
o] <N

donde Ry es un residuo que se discutirda mas adelante. Al sustituir esta expresion en la féormula para
c(x, &) se obtiene que

[ e riegate. 16 (1, dn = (2m)*10g a(w, 050 (2. 6),

que corresponden a los términos de la expansion asimptotica. Ahora, el simbolo resultante del residuo
es

R R ATRSET
Pero, se puede estimar mediante
[Ruv(z.&m)| Sn nl™ max{|d¢a(z, )| : |a| = N, ¢ interpolacion de n y 7+ &}

Note que si |n] < [£]/2, entonces cualquier ¢ de la expresion anterior es proporcional a &, por lo que
para este caso se puede estimar

R (2, & m)| Swv [V (€)™~ =,

Por otra parte, si pIN > mq, se tiene la siguiente cota para cualquier caso

Ry (2, & m)| Sn ™.

Combinando los estimativos y la expresion del residuo del simbolo se obtiene que

[ et & i (.6)

SMN <€>m1+m2_(”_5)N/

Ml d + (€)™ / (Ml di.
[n|<[€l/2

Inl=I€1/2

Al escoger M lo suficientemente grande, se puede estimar el residuo simbolico por (£)mitmz=rN,
Ahora, note que Bg‘afRN(x,f,n) es el residuo de la expansién de ag‘afa(x,ﬁ + 7). Por lo que un
argumento similar resulta en

[ emnlogol Ry (e. & i (n.) dn‘ S ()TNl

Ahora, solo queda demostrar que T, 0T}, tiene simbolo de orden —oo y no afecta la férmula asimpto-
tica. Para ello, se utiliza integracion por partes para obtener propiedades de regularidad del simbolo
restante. Considere el Laplaciano en 7

Ai}\fle2m(rfy)<(nf§) — (_47r2|$ _ y|2)N1627ri(zfy)~(n75)_

Y el Laplaciano en y,

(1= Ay)Nee2mil@=u)(1=8) — (1 4 47%|¢ — p|?)N2e2mile—v)-(1=8),
Ademas, se tiene que

E =) =VI+[E=nP+ 0P+ 1€ — P> > V1+ €2 = (&)
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Combinando estos estimativos y las desigualdades simbolicas se obtiene que
/ / A= (=8 a2, n)ba(y, €) dy dn

N-
- / / e2mi(z—y)-(n=¢) Actal@m) (1= A,)"by(y,€) dydn
n JRe (—4m?[z — y|2)N1 (1 + 4n2|€ — n|2)N>

m1 2pN; <§>m2+26N2
S oo T e

N/ <n>ml 2pN1+2N2<§>m2—2(1—6)N2 d77

< <£>m2—2(1—5)N2

~

|ca(,§)| =

)

donde se escoge N7 tal que —2pN; + 2N5 + my < —n. Por lo que se puede escoger N, libremente
para obtener la cota deseada. Un argumento analogo funciona para las derivadas de co, por lo que
este pertenece a ST (R™ x R™). O

Definicion 6.1.7 (Potencial de Bessel). Se define al potencial de Bessel de orden m € R al operador
pseudo-diferencial con simbolo (£)™. Este se denota por J™.

Se puede ver que la composicién con este operador no presenta la restriccion § < p.

Teorema618 Sea 0 <5 <1, seal<p<1,seaa:=a(x§) € SR xR"), yseab:=bE) €
7 s(R™ x R™). Entonces T,Ty, y TyT, pertenecen a SZ}“(R" X R”) Ademds, T,T, tiene simbolo
(96 §b(E).

Demostracion. Se tiene que para T, = T, T,
.= [ [ OOt pe) dydy

b [ I G 0y
= b(e)al, &)

Para T, = T, T, se puede utilizar la férmula asintética de la formula de composiciéon. Para manejar
el hecho que en este caso se permite § > p para el simbolo a, se aprovecha el hecho que

102b(€)0% alz, &)| S (€)*~ 1l (gym+olel,

Por lo que se tiene el orden deseado en ambos casos. O

6.2. Definicién y propiedades basicas en T"

El calculo simbolico en el toro T™ presenta ciertas diferencias respecto al caso euclideano. Gran
parte de ellas surgen del hecho que el dominio de frecuencias correspondiente es el reticulo Z™. Por
lo que es necesario definir herramientas analogas que funcionen en el caso discreto.

Definicion 6.2.1. Sea ¢ : Z™ — C, entonces se definen los operadores de diferencia como
Ag, (&) == (& + 6;) — »(8),
Ag;0(8) = () — (& — 05).

Ademas, para un multi-indice o € Nf, se define

A Qan ANY A A GYn
- Afll T Afn ’ A& T A£1 Afn
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Proposicion 6.2.2. Sea ¢ : Z" — C, entonces

g
Agp€) =) (-1l (5)%5 + ).
BLa
Demostracion. Se define el operador de traslacion £ := (I +Ag; ), que actua de la siguiente manera

Ejp(§) = (I +Ag)p(€) = o(§ +5).

Entonces, por el teorema del binomio se tiene que
Agp(§) = (E—1)%¢(§)

=Y (e ﬂ(a)E%(Q

B<La ﬂ
a_pl e
=> (-1 ﬁ<5)¢(€+ﬂ)-
BLla
Lo que completa la prueba. O

Note que este operador tiene propiedades anélogas a las de la derivada en el caso continuo
Proposicion 6.2.3. Sean ¢, : Z"™ — C, sean o, B € Njj, entonces

1. Ag(sp + 1) (€) = sAgp(§) +tAZY(E),
2. AN = AZTP = AlAg,

3. AZ(@U)(€) = X pen (BALL(ONAT ¥(E + B)]-

Demostracion. Todas estas propiedades pueden ser demostradas mediante induccién, por lo que solo
se demostraran los casos base. La primera propiedad es equivalente a decir que los operadores de
diferencia son lineales. Entonces, se tiene que

Ag; (s +1)(€) = (s + 1) (§ + ;) — (sp + 1) (§)
= sp(§ 4 6;) + t(§ +9;) — sp(&) — t(8)
= 80¢;p(§) + tAg; P(E).

La segunda propiedad quiere decir que los operadores de diferencia conmutan, es decir

Ag, Ag; 0(8) = Ag[p(- +65) — 0()](€)
= Ag;[p(- +6;)1(€) — Ag,0(8)
=@(§+3;+0;) — 0§+ ;) — p(§+ i) +(§)
= Ag,[p(- +6i) — 9()](€)
= A&Afi(ao(ﬁ)-

La tercera propiedad es analoga a la regla de Leibniz, o regla del producto. En efecto,

Ag; (p9)(§) = (€ + 6;)v(E + 65) — p(E)Y(E)

(€ +0,)P(E + 85) + p()Y(€ + 65) — P()Y (€ + ;) — p(E)Y(€)
OD(€+ ;) = P& + [p(€ +0;5) — ()Y (E +65)
(O[Ag Y (&)] + [Ag p (O (€ + 65)-

Lo que concluye la prueba. O

¥
¥
¥
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Proposiciéon 6.2.4 (Suma por partes). Sean p, : Z" — C. Entonces, se tiene que

D> eOAgY(E©)] = (1)1 > [AL (O (&),
cezn EeL™

dado que ambas series sean absolutamente convergentes.

Demostracion. Para probarlo para un multi-indice arbitrario basta con demostrarlo para los casos
base y luego el resultado se obtiene por recursividad. Entonces, se tiene que

> e©OAe©] = > PO +65) — »(©)]

cezn gezn
=D @OvE+5) — > w(©w(e)
cezn £ezn
=D wE =)&) = > e
cenn gezr
= > o€ = 65) — e(O)Iw(6)
Eerm
= 3 B, e ().
gen
Lo que concluye la prueba. -

En el caso discreto, los polinomios tradicionales y los operadores de diferencia no se compor-
tan exactamente como sus contrapartes continuas. Lo que inspira definiciones alternativas que se
presentan a continuacion.

Definicion 6.2.5. Para 0 € Z", se define su polinomio discreto como HJ(-O) =1,y
(k+1) . _ p(k)
0; =0;"(0; — k).
Ademaés, para cualquier multi-indice a € N}, se define

(@) = i) ... glan),
Similarmente, se define Dé?) =1,y

DY+ = p{*) ((9%. — k:]) ,

Yi \i2w
D = D) Dl
Proposiciéon 6.2.6. Para o, 5 € N, se tiene que

ALO) = o(P)g(a=0)

lo que concuerda con el caso continuo 859“ = a7,
Demostracion. Basta con ver que
Ng,05°7) = (8; + 1)) — ')
= (0 +1)8;- (8 —a; +2) — 6.

= (0; + )0V 9V (0; —ay + 1)

gl

:ajj

El resultado sigue de recursividad. O



CAPITULO 6. OPERADORES PSEUDO-DIFERENCIALES 59

Definicion 6.2.7 (Integracion discreta). Para b > 0, se definen
Be Yy gptes ¥
0<k<b —b<k<0

Teorema 6.2.8 ("Teorema fundamental del calculo’ discreto 1D). Sea 6 € Z, y sea o € Ny. Entonces,

se tiene que

k ko— 1 [eY
I L= ae( ).

Demostracion. Note que en general se tiene que

RAcf(R) = Y [f(k+1) = f(k)] = f(b) = £(0).

0<k<b

Particularmente, IPAkU) = b)), que se puede combinar con el hecho que Axkl) = kU= y el
resultado deseado sigue de una induccion. O

La extension al caso multi-dimensional es inmediata.

Corolario 6.2.9 ("Teorema fundamental del calculo’ discreto). Sea 6 € Z", y sea o € Nj. Entonces,
se tiene que

k(Jl k(o —1) (a)
kam iy 1= 19 :

Ahora, se presenta el analogo discreto de la expansiéon de Taylor.
Teorema 6.2.10 (Expansion de Taylor discreta). Sea p : Z™ — C. Entonces, se puede escribir como
1 «@ [e%
pE+0) = D —O0AP(E) +rm(&,0),
|| <M
donde el residuo satisface

ASr(€,0)] < mé OIATY (e 4+ 1)),
AT (€, 0)| Sm \a|=M,V)éQ(9)| ¢ p€+v))

donde Q(0) :={v € Z" : |vj| <10;| para todo j=1,...,n}.

Demostracion. Primero, para 0 # a € Nj, se denota m, := min{j : a; # 0}. Para 6 € Z", e
i €{1,...,n}, se define v(0,i, k) € Z™ como

0., 1<j<i,
v(0,i,k); =<k, j=1i,
0, i<j<n.

Se afirma que el residuo puede ser escrito como

ri(60) = Y ralé0),

lo|=M
donde
H% DIely) e TV AL(E + v(0, M, k(e i)
Se realiza una prueba por induccién, para M = 1, se tiene que

75, (6,0) = I Ae,p(€ +v(0,3, k) = p(& + v(0,4,0)) — p(& + v(6,1,0)).
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Por lo que se cumple el resultado deseado

27"61(579) = Z[p(€ + V(H’i + 170)) —p(f + V(e,i,()))} = p(€ +0) —p(§) =r1(£,0).

i=1

Ahora, suponga el resultado es verdadero para || = M, entonces se tiene que

P (60) = rar(€,0) — S 0 AHE)

|a)|=M
1 () A
= > (rale.0) = 0 Agp(E)
la|=M ’
- > Hfm,l) L) I A p(E + (0, M, k(s o, ) — p(€)]
la|=M j=1

Por otra parte, se tiene la igualdad

SO A (e v(0,0,0) = S [p(E + 10,7, v(0, mar k) — PIE + 1(6,5,0))
=1 =1

= D€+ w08, k), 1,0)) — pl€ -+ 1(6,1,0))]
= p<§ + V(e’mou k)) _p(E)'

Por lo que se obtiene que

k(j,a5—1) (0,ma,0tmy )i A
ru(6,0) = Y HI L km) ~-I(JJ%) ZI A€+ (0,0, 1))

|a|=M j=1 i=1
0 kG kGB—1) B
Yo TG hede) - Iasy AP +v(0,mg, k(mg, Bm,)))-
[Bl=M+1j=1

Lo que completa la induccion. Para obtener los estimativos del residuo, se considera que

Agra(€0) =] Y Afra(£,0),

|a|=M

k 1 a+w
IS T IEGOTD NS 4 (0, M, k(s i, )))
la|=M j=1

<> \9|<a> max [A“Hp(E + ).

|a\:M rveQ(h)

Lo que completa la prueba. O

A continuacion se presentan las definiciones toroidales para simbolos de clases de Hérmander y
sus respectivos operadores pseudo-diferenciales.

Definicién 6.2.11 (Clase de simbolos toroidales S)"5(T" x Z")). Sea m € R, sean 0 < §,p < 1.
Entonces, la clase de simbolos toroidales S)'s(T"™ x Z") consiste de las funciones a := a(x,§) :
T™ x Z™ — C que son suaves en = para todo «f , v que satisfacen las desigualdades simboélicas

|AgD a(w, €)| Sag (€)™ A8

para cualesquiera multi-indices o, 8 € N.
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Definicién 6.2.12 (Operadores pseudo-diferenciales toroidales). Para a € SJ's(T™ x Z"), se denota
T, a su operador pseudo-diferencial toroidal correspondiente, que se define como

~

Tof(z) = ™ %a(z,&)f(€).

cezn
Ademas, se dice que T, € U}'5(T" x Z").

Proposicion 6.2.13. Sea f € C°(T"), entonces T, f estd bien definido y T, f € C°(T™). Ademds,
T, es un operador continuo de C*°(T™) en si mismo.

Demostracion. Se tiene que fe S(Z™), entonces la serie en la definicion de T, f converge absoluta-
mente y T, f € C*(T"). Por otra parte, se tiene que

~

T.f(z) =) e %a(z,€)f(€)

cezm

=) a(x,€) | 2TEVEf(y)dy

Zewof,

= a(, &M | errlev)e (I — Ey)Mﬂy) dy
b Tn 471_2 b

cezm

donde L, es el Laplaciano respecto a y. Entonces, basta escoger M lo suficientemente grande para
obtener convergencia absoluta de la serie. Por lo que, para f; — f en C°°(T"), se puede intercambiar
el limite con la serie y la integral mediante la convergencia dominada de Lebesgue para obtener
Tofj = Tof en C(T™). O

Nota 6.2.14 (Kernel de Schwartz para operadores pseudo-diferenciales toroidales). La definicion
de T,f para un simbolo toroidal sugiere que puede ser reescrito (ignorando preguntas acerca de
convergencia) como

7.0 = [

donde k(z,y) es el kernel de Schwartz que se expresa como

k,y) =) ¢®" 0 %, ),

é‘ezn

Z ei27r(z—y)'5a(x’£)f(y) dy:/ k(z,y)f(y)dy,

nﬁEZ" n

y se entiende en el sentido de distribuciones.

Teorema 6.2.15. Sean 0 <0 < p <1, sea a € S5(T" X Z"), y sea b € SL’(;(R” x Z™). Entonces,

el simbolo del operador T, T}, pertenece a Sgl;l(R” X Z"), y sigue la siguiente expansion asimptotica

S L [AYa(e, Dbz, €)]

> T

Demostracion. Se tiene que el simbolo de la composicion esta dado por

o€ i= 3 [ e Saa () dy

nezr

_ Z ei27ra:'(77—5)a(x’ 77)/[)\(77 -¢, f)

neLr

= Z 2T gz, + E)b(n, €).

nezm
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Ahora, se utiliza la expansion de Taylor discreta para obtener que

, 1 -
c(z, &) = Y e N —Ala(, & + Ry (x,€,n) | b(n,€)
nezn <N
1 BN _ -
= Z ~1 {Aga(xag)} Z eZ%m.nb(n,f)n(V) + Z GZQW%"RN(%&’?)()(U,&)
v’ nezn nezn

-3 5

A%a(z,6)] Db, &) + Bw(a,6).
i<

Ahora, solo queda estimar el término correspondiente al error. En efecto, se tiene que

A" [ b(n, €)]| = |Ag 9 e / ey, &) dy‘

n

- st |

_ 85'6i27r:1:-77<n>7r/

()17 gyt el

Para el residuo de la serie de Taylor discreta se tiene que
|AZ 07 Ruv(z, &) S ()Y

<

n

(m)"e =TV p(y, £) dy’

\ , Ey r/2
e TYIAL <1 4772> b(y, &) dy

A

lezl{fr}é}e{Q(n) ‘A?+a 0r o, ¢ v

méx (€ 4 )™ PINH DHIIEY]
|w|=N,veQ(n)

Entonces, por la formula de Leibniz discreta y tomando o/ + o” = «a, 8/ + 8" = 3, el término del
error puede ser acotado por

IAZOS BN (2, €)| S (€)1 S () NHF I max (g 4 p)mme(NFla D HaIET
nezn veQ(n)

Ahora, suponga que |n| < |£|/2, entonces el término de error puede ser acotado por

<£>l7p|o/|+5T+m7p(N<HOt”D+§|ﬂ“‘+n max < >N+|ﬁ/|*T7
Inl<I¢l/2
y al escoger r = N + ||, se obtiene que
(€ymH=(p=0)N =plal+o1Bl+n.
-M

Por lo que este término puede ser aproximado por cualquier () escogiendo el N apropiado en
vista que p > 4. Por otra parte, si |n| > |¢|/2, entonces para N lo suficientemente grande se puede
estimar el término del error por

<€>l7p\o/|+5r Z <77>N+|,8'\7r < <£>l7p‘o/|+5’r‘+N+|,8/‘f’rfl’
Inl>€1/2

cuando 7 es méas grande que N. Ademas, dado que § < 1, se puede escoger r para estimar este
término por cualquier (£)™™ . Lo que completa la prueba. 0O

Ahora, ha sido expuesto que la herramienta correspondiente al trabajar en el espacio de frecuen-
cias de simbolos toroidales es el célculo de diferencias discretas. Sin embargo, puede ser de interés
extender las técnicas utilizadas en el analisis de simbolos euclideanos para obtener resultados simi-
lares. Para ello, se realiza un proceso conocido como la extension del simbolo toroidal, que consiste
en una interpolacién suave de un simbolo definido en T™ x Z™ para obtener uno definido en T™ x R™.
A continuacion se presetnan los detalles de dicho proceso.
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Lema 6.2.16. Ezisten funciones ¢, € S(R™), para cada oo € N, y una funcion 6 € S(R™), tales

que
= O+k) =1,

kezn

(Far)lzn(§) =00(&) y 02 (Frn0)(€) = D¢ bal8),
para todo € € Z™.

Demostracion. Primero, considere el caso unidimensional. Sea 6 € C*°(R), tal que
suppf C (=1,1),  0(—=z) =0(z), 0(1-y)+0(y) =1

para z € Ry 0 < y < 1. Note entonces que 6 € S(R), y por lo tanto Frf € S(R) también. En
particular, para £ € Z, se tiene que

(Frb)(& / O(z)e" "¢ dx

= / [0(z — 1) + O(x)]e” 2™ dg
0
= do(§)-
Ahora, si la ¢, € S(R) deseada existe, entonces debe satisfacer que

[ e moneae = [ 2 BLone)a
. R
_ i 67,'27rz « ei27TCE‘§ o dé.
(1 ) /R Pa(§)dE

Por lo que se obtiene la formula

(—i2mz)*0(x) = (1 — ™) (Fy ' da)(2)-

Entonces, se puede definir ¢, como

(=285) 0@), 0<lal <1,
Falga)(@) = | 1, £=0,
0, |z| > 1.

Para el caso n-dimensional se puede definir el mapa = — 6(x1)---0(x,), que cumple las mismas
propiedades. O

Nota 6.2.17. La clase de simbolos S‘Té(']l‘" x R™) se puede definir como el conjunto de simbolos en
la clase S77;(R™ x R™) que son 1-periddicos respecto a .

Teorema 6.2.18. Sea 0 < 6 <1 y sea 0 < p < 1. El simbolo a € S (T X Z™) es un simbolo
toroidal si y solo si existe un simbolo euclideano a € S} S(T™ x R™) tal que a = a|rnxzn. Ademds,

esta extension es unica modulo S™°°(T™ x R™).
Demostracion. (<) Por el Teorema de Valor Medio se tiene que para cualquier multi-indice « € Ny
va(x,€) = Agdga(x, )

= 35 5@(@“, E)le=n;

para algin n € @ := [£1,&1 + a1] X -+ X [§n, &n + ay]. Por lo que, se obtiene que
|AgD]a(x, )| = [0 0 al(w, &)|e=y]
Sap <n>m—p|a\+6lﬂl
<a <§>mfp\a|+5\ﬁl.
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(=) Sea 6 € S(R™) como en el Lema[6.2.16] y se define

a(,€) == 3 (Fan)(€ — mala, ).

nezn

Se puede ver que cuando ¢ € Z™, entonces a(z, &) = a(x, ). Ademaés, se tiene que

0807 a(z, &) = | Y 08 (Frn0)(& — n)0Ja(x, n)

neL™

= Z Z?Qba(g - 77)8551(%17)

neLn

=D ¢al&—n)ALa(x,n)

newLr
Sas Y |6al€ —n)|(p)m=rletoldl
nen
Sa Y (m M (g —mymorlaltold
newr
< <£>mfp|a\+5|ﬂ| Z <n>\m*P|a\+5|ﬁ||*M
nezm
<up <§>m*P|a\+5|ﬁ|,

Aqui se utilizo el hecho que ¢, € S(Z") y que (£ —n)? < (£)9(n)l9l. Lo que completa la prueba
de la existencia del simbolo. Para demostrar la unicidad, sean a,b € S;%(T” x R™), tales que
a|rnxzn = blTnxzn. Entonces, se define ¢ := a — b, y para £ € R™ \ Z" se escoge 1 € Z™ uno de sus
puntos mas cercanos. Por lo que se tiene la siguiente expansion de Taylor de primer orden

c(w,&) = clz,n) + Y ral,&E—n)(E—n)"

|a]=1

= Z ra(xagag - 77)(5 - n)aa

la|=1
donde L
rol,€,0) = / (1 D)02c(x, € +10) dt.
0

Entonces, se tiene que |c(x,&)| < (€)™ P, y este proceso puede aplicarse recursivamente a ¢ y a sus
derivadas para concluir que ¢ € ST®°(T™ x R™). O

Definicién 6.2.19 (Periodizaciéon). La periodizacion de una funciéon f € S(R™) se define como

Pfx) =Y flx+k).

kezn

Teorema 6.2.20 (Periodizacién de operadores). Sea a := a(z,§) € S7%(R" x R"), una funcion
1-periodica en x para todo &. Sea a = a|rnxzn, entonces

(PoTu)f = (TaoP)f,

para toda f € S(R™).
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Demostracion. Se tiene que

P(Taf)(x) - Z (Taf)(m + k)

kezn

= 3 [ e et k(e £)(€)

kezn

= /Rn (Z ei2wk-£> ei2m.€a(x,£)(}-mf)(€) e

keZm

= [ 62:(&)e™ Ca(z, &)(Frn f)(€) d¢

R™

= Z 2™ q (2, &) (Frn f)(€)

cezn

=) ™ a(, &) Fre (P£)(€)

fezn
= (TaoP)f(x).
Lo que completa la prueba.

Al combinar este resultado con el Teorema [6.2.18] se obtiene que

Corolario 6.2.21. Sea 0 < § <1, y sea 0 < p < 1. Entonces, se tiene que

WS (T x R™) = W (T™ x Z27).
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CAPITULO [

Continuidad de operadores pseudo-diferenciales

En este capitulo se presentan resultados clasicos y originales, obtenidos con Cardona [12} 10, 1T],
acerca de la continuidad de los operadores pseudo-diferenciales discutidos anteriormente. Se incluyen
ciertos resultados en R”, pero se presenta un mayor énfasis para los resultados en el caso del toro
™.

7.1. Continuidad en espacios de Lebesgue
7.1.1. Continuidad de operadores pseudo-diferenciales en espacios de Le-
besgue L7

Teorema 7.1.1. Sea a € S]'s(R™ x R"), entonces su kernel de Schwartz cumple que

|k(1'7y)| SN |£L’ - y|_N’
para © #£y, y para cualquier N > (m +n)/p.
Demostracion. Con el argumento de integracién por partes se tiene que
2ri) Nz — y) k(x,y) = 9¢ (2™ @) € gz, £) dE
R’n.

= ()l [ o aa, o) de.

Entonces, si se fija |y| = N, se tiene que

& — 5N k(2 y)] < / (&™eN d,

n

que es finito cuando m — pN < —n. O

Teorema 7.1.2. Sea a € 57 ,(R" x R™), entonces T, extiende a un operador acotado de L*(R™) en
s7 mismo.

Demostracion. Primero, suponga que a := a(zx,§) tiene soporte compacto respecto a z. Ademas, es
suficiente demostrar este enunciado para funciones f € S(R™) debido a que este es secuencialmente
denso en L?(R™) y a un simple argumento analitico. Entonces, se define a la transformada de Fourier
de a respecto a x como

a(X, €)== Fla(- ) }N).

66
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Ahora, note que para cualquier multi-indice o € Njj se tiene que

(2miN)a(\, €) = / e 2T A0 a(x, ) dw.

n

Entonces, |(2miA)*a(), §)| < C, uniformemente en &. Por otra parte, se tiene que

~

Tfe) = [ emiee [ mean, o f g
_ / 27N F () d.

Entonces, gracias a la identidad de Plancherel

~

| Ts fllo2 = | F(Taf)lloz = lla(A, <) fll 2
< sup [ O fllze < NN fllze,
EGR"

para cualquier N > 0. Por lo que
7oz < [ Tafle
S [ Il xS 1o

cuando se escoge N > n. Ahora, considere el caso en el que el simbolo no necesariamente tiene soporte
compacto. Para ello, se fija zop = 0 y se descompone f = f1 + f5, donde f; y fo son funciones suaves
tales que [ fi| < [f], |f2| < |f], y que supp fi C {z € R" : [z < 3}, supp fo C {z € R" : |z| > 2}.
Fije n € C3°(R™) tal que sea igual a uno en la bola unitaria. Entonces

/ Ty () da = / Tyo o ()2 da
{l]z|<1} R™
s [ 1h@)ia
< 2dz.
< /$|§3|f<w>| z

Ahora, por el Teorema [7.1.1] se tiene que
k()] S|z —yI7N Sn ™,

dado que |y| > 2 y |z| < 1, que implica que |z — y| > 1. Entonces, se obtiene que

T fol)] < / k()| o) dy

{lyl=2}

: /{Iy>2} |f32/?%)| ‘
1/2 1/2
<(L )" (Lgwm)

Y
<([L )
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cuando se elige N > n. Por lo que se tiene que

2 |f<y)‘2
/{ T /R e ay

Note que los estimativos de fi; y fo solo dependen de la dimensiéon n y las constantes de las des-
igualdades simbdlicas de a. Es decir, no depende de zq, y se puede escribir que

1f(z)]* dz
2dz <
/{zxo|<1} Taf@)f"d /]R (@ — )N’

Por lo tanto, si x4 es la funcién caracteristica del conjunto A, entonces al integrar respecto a xg y
cambiar el orden de integracién se obtiene que

2dx
/ / X{jo—o| <1} Taf (2)]? dz dzg NN/ / |f@)]" dz dzo
n n 51371’0

B [ |T.f(= )\de,SN/Rnlf(x)de.

R

Lo que completa la prueba. O

Nota 7.1.3. Los operadores T' € \Il(l),O(Rn x R™) tienen propiedades que los hacen bastante especiales.
En realidad, son ejemplos de los tipos de operadores que dieron inicio a la teoria de operadores
integrales singulares de Calderon-Zygmund [7]. En particular, se puede utilizar esta teoria para
concluir que los operadores en ¥{ j(R™ x R™) son continuos de L en si mismo, para 1 < p < oco.
Por lo que se enuncia este resultado sin demostracion.

Teorema 7.1.4. Sea T € U9 ((R" x R™), entonces T se extiende a un operador acotado de LP(R™)
en st mismo.

Ahora, se presenta un resultado de continuidad L? para el caso del toro. En este caso se relajan
los requerimientos de regularidad del simbolo, en vista de la compacidad del toro.

Teorema 7.1.5. Sea k € N, tal que k > n/2, y sea a := a(x,£) : T" x Z" — C, tal que
|0 a(z,€)| < C,

para todo x,&, y |B] < k. Entonces T, extiende a un operador acotado en L?(T™).
Demostracion. Primero, se define

)= 3 [ e a1 () as

gezn
de tal manera que A, f(z) = T, f(x). Entonces se tiene que

T.715 = [ Taf@Pdo< [ sup |4, f(@) da.
Tn Tn yeTn

Al aplicar el Teorema de encaje de Sobolev, se obtiene que

1Tl s [ 3 [ 05 s@P ayas

la|<k

< Z sup/ 05 Ay f(z)]* da

o] <k VET"

= Y sup |95 4, f ()7

laf<k YET"

< Z sup Sup |8 a(y, f)| ||fHL2~
la|<k YET" £EZ

Lo que completa la prueba. O
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A continuacién se presentan una serie de resultados de continuidad L? tanto en R™ como en T".
Como el enfoque de este trabajo es en el estudio de continuidad de operadores pseudo-diferenciales
en el toro, entonces no se incluiran las demostraciones de los resultados en el caso euclideano.
Sin embargo, las técnicas que se utilizaran en este caso pueden ser modificadas para recuperar
las demostraciones de los casos euclideanos. El primer resultado que se presenta es uno clasico,
demostrado por Fefferman [20] en el contexto euclideano.

Teorema 7.1.6 (Fefferman). Sean 0 <d <1—e <1, yseaT € V7" _s(R" x R"). Suponga que

m < —ne

1
p 2|

entonces el operador T extiende a un operador continuo de LP(R™) en si mismo para 1 < p < oo.

Este resultado fue extendido al caso toroidal para el rango 2 < p < oo por Delgado [I6]. Sin
embargo, se relajan los requerimientos del simbolo como fue el caso en el Teorema [7.1.5]

Teorema 7.1.7 (Delgado). Sea 0 < e <1, y sea k € N tal que k > n/2. Sea a : T" x Z"™ — C un

simbolo tal que
|Aga(z, )] S (€)=l |90 a(x, €)] S (672,

para ||, |8 < k. Entonces el operador T, extiende a un operador acotado de LP(T™) en si mismo
para 2 < p < 0.

Nota 7.1.8. En el resultado de Delgado se puede entender a a(x, ) como un simbolo con regularidad
limitada, pero se puede considerar informalmente como un simbolo en una clase de Hérmander con
p=1—cyd=0.

Note que en ambos casos se requiere § < p. Esta restriccion puede ser salvada gracias al trabajo
de Alvarez y Hounie [2]. A partir de este momento, se denota A := max{(d — p)/2,0}.

Teorema 7.1.9 (Alvarez y Hounie). Sea 0 < 6 < 1, sa 0 < p <1, ysea T € s (R™ x R™).
Suponga

1 1
< — — - — —
m < n{(l p)‘p 2‘—}—)\],

entonces el operador T extiende a un operador continuo de LP(R™) en si mismo.

El anélogo toroidal de este resultado fue demostrado con Cardona en [I2]. Aqui se presenta la
prueba del mismo siguiendo el mismo esquema que Alvarez y Hounie. Primero, se demuestran unos
estimativos del kernel de Schwarz de operadores pseudo-diferenciales toroidales bastante tutiles.

Nota 7.1.10. Ahora, vale la pena indicar la razon por la que los resultados en el toro no son con-
secuencia de los del caso euclideano. Las clases H! y BMO, no son estables bajo la multiplicacién
de funciones test, por lo que no es posible tratar al toro como una variedad mediante particiones
de la unidad. Ademas, los operadores pseudo-diferenciales con simbolos en las clases de Héormander
no son estables bajo cambios de coordenadas cuando p > 1 — §. Esto justifica el hecho de que se
considere al toro T” como un caso distinto a R™ y se estudien los resultados por separado.

Teorema 7.1.11. Sea T' € W;(T" x Z"), con 0 < p <1, 0 < § < 1, con simbolo p(z,§) y con
kernel ‘
k(z,y) =Y e, €). (7.1.1)
cezn

(a) (Propiedad pseudo-local) k es suave fuera de la diagonal. Ademds, dados o, 8 € N}, entonces
para cualquier N > (m +n+ |a+ 5|)/p se tiene

sip |z — y|N|8§‘65k(z,y)| = Copn < 00. (7.1.2)
oy
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(b) Suponiendo que p tiene soporte compacto en & uniformemente en x, entonces k es suave y
dados a, B € Njj, se tiene que

1020, k(. y)| Sap (x—y) . (7.1.3)

(c) Suponiendo m + M +n < 0 para algin M € Z*, entonces k es una funcién continua acotada
con derivadas continuas acotadas hasta el orden M.

(d) Suponiendo m + M +mn =0 para algin M € 7T, entonces existe C > 0 tal que

sup  |0200k(w,y)| < Cllogla—yll, o #y. (7.1.4)
lot+B|=M
Demostracidn. Primero, se observa que existe p € S)"(T" x R™) tal que plrnxzn =py con Ty =T.

En consecuencia, el kernel de Schwarz puede considerarse como k(z,y) = [z 2@y Ep(p €) dE.
Ahora, las derivadas del kernel se ven de la siguiente manera:

OSOSk(x,y) = / (—i2mg)Pem 0N O (i2mg) 08 plx, €) dE, (7.1.5)

n
w<la

que es el kernel de un operador con simbolo de orden m + |« + 3|. Entonces, es suficiente probar los
resultados cuando |o + 8| = 0.

(a) La continuidad del kernel k(z,y) se prueba en [31, Teorema 4.3.6]. Por integracion por partes
se tiene que

(200" (@ = )K= [ 57 [0 ) e

n

(- [ ey iz, ) de
Por lo tanto, si se fija |y| = N, se obtiene

ji2m (N — |V |k(z, y)]| < / (€™M d.

R™

La ultima integral es finita cuando N > (m + n)/p, probando el resultado.

(b) Se observa que el kernel seria una suma finita de funciones continuas, probando la continuidad
de k(z,y). Ademaés, p tendria el mismo soporte de p. Por lo tanto, la ultima integral anterior
serfa finita sin ninguna restriccién sobre N.

(c) Sea m < —n. Entonces, se tiene la serie finita

(2, 9)| S €™

gezn

probando la acotacion de k(z,y).

(d) Primero se observa que por (a), (b) es suficiente probar la estimacion cuando |z — y| < 1y si
p(z, &) se anula para |£| < 1 uniformemente en x. Sea m+n =0y sea ¢ € C5°(R) con soporte
en [0,1], tal que [ =1,y se define

Bt) = [ S, () - 1),
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de modo que
oo
k(x,y) = / k(x,y,t)dt.
1
Luego, usando integracién por partes, se tiene que
(120" — )kl t) = [0 [ o, )((€) ~ 1) de
=(-ph / BTETVE N T CLOEp(w, €)07p((€) — 1) de.
" w<y
Dado que (£) ~ t en el soporte de ¢(- — t), que tiene volumen estimado por Ct"~ !, se obtiene
para |[y| =N
o=y nls [ @mta
supp ¢(-—t)

</ tm—pN dg < Ctm—i—n—pN—l.
supp p(-—t)

Sumando las estimaciones para N = 0, 1, se obtiene
=1

k(x,y, 1)) S ————.
|k(z,y )\Nt,pﬂx_m

Entonces, el resultado de evaluar la integral anterior es la estimacion deseada |k(x,y)| < C|log |z —yl|
para x # y. O

Ahora, se enuncia un resultado de continuidad en L?(T"), cuya demostracion es muy similar a
la realizada por Hounie en [23].

Teorema 7.1.12. Sea p: T" x R™ — C un simbolo tal que para 0 < p<1,0<d<1, m< —-n\y
lal, 18] < [n/2] satisface:
08075 (w, €)| < Cap(g)mrlelHolAl, (7.1.6)

Entonces Tj es acotado de L2(T™) en si mismo con norma proporcional al las mejores cotas Cop.

Teorema 7.1.13. Sea T' € V;(T" x Z"), con 0 < p < 1,0 <6 <1, m < —n[(1 — p)/2+ A,
entonces T es una aplicacion continua

(a) de L*>(T™) en L?/*(T™),

(b) de L?/=P)(T™) en L?(T™).
Demostracion. Primero se observa que J"(1=0)/2T y T j*(1=)/2 tienen orden < —n), por lo que
son acotados en L?(T") por el Teorema [7.1.12} Ademés, por la desigualdad de Hardy-Littlewood-

Sobolev, se tiene que J~"(17*)/2 es una aplicacion continua de L2(T") en L?/#(T™) y de L*/(?=r)(T")
en L*(T™). Por lo tanto,

T fll 20 = T2 OORT | gy S TCPPTf 2 S 1 f 22,

T flle =TT =P2 =02 || S YT 002 F 2 S fllpose-m-
Por lo tanto, se prueba el resultado deseado. O

Teorema 7.1.14. Sea T € W's(T" x Z™), con 0 < p <1, 0 <5 < 1, con simbolo p := p(x,§) y con
kernel k = k(x,y).
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(a) Para cualquier z € T™ fijo, y o > & > 0, se tienen las desigualdades para el kernel:

sup / |k(z,y) — k(z, 2)| dz < C, (7.1.7)
ly—z|<o J|z—2z|>20

sup / |k(y, ) — k(z,z)|dx < C.. (7.1.8)
ly—z|<o J|z—2z|>20

(b) Sim < —n[(1-p)/2+ N, yo <1, se tiene para cualquier z € T™ fijo,

sup / |k(z,y) — k(z, z)|de < C. (7.1.9)
|lx—z|>20P

ly—z|<o

(c) Sim < —n(l—p)/2, yo <1, se tiene para cualquier z € T" fijo,

sap | k(5 2) — K(z, )| dz < C. (7.1.10)
ly—z|<o J|z—2z|>20r
Demostracion. (a) Primero, se observa que |z —y| > |z — 2| — |z — y| > o en el dominio de

evaluacion. Luego, por la desigualdad triangular y (7.1.2)) se tiene

sup / k(z,y) — k(. 2)| da
|x—z|>20

ly—z|<o

< sup / k(z,y)|dz+ sup / ()| da
|x—z|>20 |z—z|>20

ly—z|<o ly—z|<o

5/ \m—y|_Ndx+/ |z — 2|7V dz
lz—y|>0 |z—z|>0

§/ J’Nder/ J*NdngE.

(b) Como antes, sea p el simbolo correspondiente en T" xR™. Sea ¢ € C§°(R) con soporte contenido
en [1/2,1], tal que

00 2
/ p(1/t)/tdt :/ e(1/t)/tdt = 1.
0 1

Se define
bat) = [ e S p((6)/1) e

de modo que
o0 (o]
M) = [ baptyd= [ koo
0 1
Sea N > n/2 un entero, entonces se obtienen las estimaciones por Cauchy-Schwarz

/ [, ,8) — ke, 2,8)| da
|x—z|>20P°

1/2

1/2
< U (1+t2p|x—z|2)N|k‘(x,y,t)—k(m,z,t)|dx} U (1+ 20|z — 22)~N da

1/2
< {/ (1 + %)z — 2))N|k(x,y,t) — k(z, 2,1)] dm} t=rm/2, (7.1.11)
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Asi, para |a| < N se tiene que

719l (z — 2) / e e e j(a, ) (() 1) de

— pplel(z — )0 /n i2m(@—2)-€ [ei27r(z—y)'5 — 1} plx, E)p((€)/t) d¢

=3 Coptrlel / el €7 [ (20 € 1) e, €)] 0P p((6) /1) dé.
-

B<La

Ahora, |e?™(@=2)€ _ 1| < |z — z||¢] < to en el soporte de ¢((£)/t). Por otro lado,
|agei27r(x—Z)~£| <y ly— 2|1 <, ol < ey~ (ta)ll,

Asuma que to < 1, entonces para cualquier y € C§°(R"), que es igual a uno en el soporte de
©((£)/t) el conjunto

Sos = {<5>n<17p>/z+p|m3§ [<ei2ﬂ<zfz>.g _ 1) ﬁ(xg)] (/D) i ly—z2| <o, z€ ’]I‘"}

tiene medida acotada por (&)"(1=P)/2+018l(tg)(€)m—PIBl < to (€)=, Asi, se puede considerar
p(z,€) como un simbolo en R™ x R™ y por el Teorema cada uno de los operadores
correspondientes con simbolos

(na=ePlgl [ (2@ € 1) jla, €)| x((€)/1),

en el conjunto X, 4 son acotados en L?(R™) con norma estimada por to. Por lo tanto, (7.1.11))
puede estimarse usando la identidad de Plancherel mediante

o Z Cagtplal <€>—n(1—p)/2—p\/3\t—\a—ﬁlgg—ﬂw(@)/t)‘

B<a, |a|<N

t—pn/2
L2(R™)

< totPlely—n(1=p)/2—p|Bly—|a—Blp—pn/2 < Cto, (7.1.12)

como (§) ~ t en el soporte de la funcion. Ahora, se elimina la restriccion to < 1. Para |a| = N

se tiene que
[ el
|xt—z|>20P

1/2 1/2
N -N
S |:/ (t2p|x - y|2) ‘k}(l‘,y7t)|2 d[E:| l/ (|t2p|1' — y|2) dl‘
" le—y|>oP
N 1/2
S UT (| — yI?) Ik(fmy,t)lzdx] t=PNgpn/2=0), (7.1.13)

Sea |a| = N, entonces

el =y [ e, )l (€))0) ot

=" Copt?l®! / T p(a, )1 Plag P ((€) /1) de,

5S0¢ n

y para cada 3 < a, la norma L?(T") como funcién de x de

/n 2@ €l (2, €)1 Pla2 P oo((6) /t) de
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es igual a la norma L?(T") como funcién de x de
[ e agita  y, 0P 1) .

Por otro lado, el conjunto {(5}”(1”’)/2+p|'8|3?]5(x +y,&) : y € T"} tiene medida acotada por

(€yn(1=p)/2+pIBl (e)ym=rIBl — (£)n(1=p)/2+m " asi que sus respectivos operadores son acotados en
L?(R™) por el Teorema Por lo tanto, (7.1.13)) puede estimarse mediante

Z telely—n(1=p)/2—p|Bly—pla—Blyn/24pN ;p(n/2—N) < (ta)p(n/2—N).

B<a, |a|=N

De manera similar, se puede estimar
/ |k(z,z,t)|dz < (ta’)p(n/2*N).
|z—z[>20°

Usando estas estimaciones y ([7.1.12]) se obtiene el resultado de la siguiente expresion:
1/o oo
/ \k(z,y) — k(z, z)|dz < / to/tdt + / (to)P/2=N) jtdt < C. (7.1.14)
|lr—z|>20P 1 1/o

Completando la demostracion.
(c¢) Primero, se observa que
k(y,z,t) — k(z,z,t)

- / ey, ) — (2, E)p((€) /1) de

4 / TR [ (2] (s €)((6)/1) de

= f(SC—:%y,Z,t)—Fg(SC,y,Z,t).

Entonces, se obtiene
1/2
[ otz S oo | [ gtep0?a eole) i)

ez

1/2
|<tﬂx>°‘g<x,y7z,t>|2dx] .
|la|<N

n

Se observa que g es la transformada de Fourier en R™ en la primera variable de la funciéon
G(&,y,2,t) = [e27€ — 2] (2, €)p((€)/t). Ademds, como antes, [] (£27€ — i27=€)] <
Cto cuando to < 1. Por lo tanto, asumiendo to < 1 y usando la identidad de Plancherel, se
obtiene

[ lote.z0lde S €7 S 08GO e

lal<N

< t*pn/Z Haﬁ i2ny-€ _ i2mz-€\ < a—p ‘

< > |l T (= ) 900
BLa, |a|<N

< t—Pn/2 Z tot™PIBly—la=Bln/2
Bla, |a|<N

< tot"(1=P)/2+m < 4y



CAPITULO 7. CONTINUIDAD DE OPERADORES PSEUDO-DIFERENCIALES (0]

Ahora, se elimina la restriccion to < 1 y se observa que

pyt) = [ e e ] e, )l (€)/0) .

Asi, se tiene que

/ \g(z,y, z,t)| da < t7PN gP(n/2=N) [/

Se puede usar la identidad de Plancherel como antes, para obtener

n

(e - z2>N|g<x,y,z,t>2dx} .

[ lotaz ol de s eoVgrmz STl (@€~ 1)p(z, )] 07 o((6)/1)

B<a, |a|=N
< t—PN gp(n/2—N) Z t—la=Blyn/2
B, |a|=N

L2 (R”)

< (ta)p(n/Q—N).

Se pueden usar los mismos procedimientos para encontrar estas cotas para f(z —y,y, z,t) al ob-

servar que f|9c—z coge [f(@=Y,y,2,t)|dz < flx|>a” |f(z,y, z,t)| dz. Entonces la cota deseada proviene
del célculo en (|7.1.14)) O

Teorema 7.1.15. Sea T' € U';(T" x Z"), con 0 < p < 1,0 <6 <1, m < —n[(1 — p)/2+ A,
entonces T y su adjunto T* son aplicaciones continuas

(a) del espacio de Hardy H*(T") en L'(T"),
(b) de L>=(T™) en BMO(T™).

Demostracion. (a) Sea a un atomo de H'(T™) con soporte en B(z, o), que satisface ||a|| =~ < |B|™!
y la condicion de cancelacion. Si o < 1, se define B’ = B(z,20”) y A =T" \ B’. Entonces

/ |Ta(x)|dr < / |Ta(x)| dz —|—/ |Ta(x)|de =: I + Is.

Tn B A

Ahora, usando la desigualdad de Cauchy-Schwarz y el Teorema [7.1.13| (b) se obtiene
L < xwlle2Talle S 0”2 |al| p2rc-0

< gon/2 [ / B2/ dp
B

(2—p)/2
} < aP"/2|B|‘P/2 <C,

y usando el Teorema [7.1.14] (b) se tiene la estimacion,

< [ [ ) - ke lawldyar < s [ o) - ke)de< e

ly—z|<o

Cuando o > 1, se define B’ = B(z,20) y A =T"\ B’. Entonces se divide la norma L(T") en
I + I como anteriormente. Ahora se usa el Teorema [7.1.13| (a) para obtener

L < |IxpllzzTal 2 € 0™l 2

1/2
S| [1Bra] <o <
B

y se usa el Teorema [7.1.14] (a) para estimar Is.
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(b) Sea B = B(z,0). Si 0 < 1, se define B’ = B(z,20") y A = T" \ B’ de modo que se obtiene
f=fxs + fxa=:f1+ fa. Ahora, se define b = T f5(z), que esta bien definido, ya que T fs
es suave en B’. Entonces

1
@/B|Tf(x)—b|dx< \BI/ Tf1(x |dx+|B|/ T fo(z) — b|dz =: I + I».

Por la desigualdad de Holder y el Teorema [7.1.13| (a) se tienen las desigualdades

1 1/2
1 < 1 llaaen IT Allios 1B frlse < 1BI772 U 1f12 dw] < (1l
B/

y usando el Teorema [7.1.14] (c) se obtiene

I = |B|//|’”y K Wldyde < s [ fbe )=k o)l do < 1l

ly—z|<o

Cuando o > 1, se define B’ = B(z,20) y A = T" \ B’. Entonces se divide la norma BMO
en I; 4+ I como anteriormente. Ahora se usa la desigualdad de Cauchy-Schwarz y el Teorema
7.1.13| (b) para obtener

1/2
A P P e A PR e P

= |
|B|
y se usa el Teorema [7.1.14] (a) para estimar 5. Asi, se obtiene la desigualdad

1
ny = inf — — < o (Tn) -
I flastogen = sup ot = [ 174(0) = bl de < Lo

Por lo tanto, se completa la demostracién para T'.
Ahora, se observa que por un argumento de dualidad y en vista del Teorema se tiene que
también es valido para el adjunto T*. O

Teorema 7.1.16. Sea T' € W's(T" x Z"), con0<p<1,0<d5<1y

m< —n |:(1—p)‘;—;‘+)\]. (7.1.15)

Entonces T' es una aplicacion continua de LP(T™) en si mismo.

Demostracion. Se puede usar el argumento de interpolaciéon compleja entre (H!(T™), L'(T")) y
(L?(T™), L*(T")) para 1 < p < 2, y entre (L*(T"), L?(T")) y el par (L}(T"), BMO(T")) para
2 < p < 0o. De hecho, T es acotado en L(T™) si m < —n\ por el Teorema Por otro lado, si
m < —n[(1 — p)/2 + A], entonces T sera acotado de H*(T") en L'(T") y de L°°(T") en BMO(T").
Entonces T sera acotado en LP(T™), por el argumento de interpolaciéon de Fefferman-Stein, para

1 1-60 6

PR
y0<68<1,conqg=10¢g=o00. Lo cual es equivalente a la restriccion
m<—nA —n[1-p)/24+ (1 -0).
Es decir, que m satisface , completando la demostracion. O]

Se pueden usar las propiedades de los operadores de potencial de Bessel para extender el resultado
de acotacion en LP(T™) al caso LP(T™)-L9(T"™). En el caso del toro, el siguiente teorema extiende el
resultado de acotacion LP(T™)-LI(T™) en [9] al rango completo 0 < p < 1,0 <4 < 1.
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Teorema 7.1.17. Sea T € \IlZfé(T” XZ"), con0< p<1,0<6<1, entonces T es una aplicacion
continua de LP(T™) en LY(T™) para 1 < p < q < 00, $i

(o) 1<p<2<qy

m< —n <;—;+>\>, (7.1.16)

(b)2<p<qy
mgn[;;+(1p) (;;)H}, (7.1.17)

(c)p<q<2y
mgn[;;+(lp) (;;)H] (7.1.18)

Demostracion. (a) Sean m; = —n(1/p—1/2) y me = —n(1/2—1/q). Entonces m < my +my —nA
y J-™2TJ~™ es acotado en L?(T™) por el Teorema Ademés, por la desigualdad de
Hardy-Littlewood-Sobolev, se obtiene que J™ es acotado de LP(T™) en L?(T") y J™2 es
acotado de LY(T") en L?(T"). Por lo tanto,

|72 (72T T )T ™ fllee S N2 TT ™) T™ fll gz ST fllee S I fllze-
Asi, se prueba el resultado.

(b) Sea m’ = —n(1/p —1/q), de modo que J™ es continuo de LP(T™) en L4(T") y J~™ T tiene
orden m—m’ < —n[(1—p)(1/2—1/q)+ A] y es una aplicacion continua de L?(T™) en si mismo.
Asi, se tiene que / , /

177 (I T) fllpe S N7 T fllee S llze-

Por lo tanto, se obtiene la estimacion deseada.

(¢) Como anteriormente, se define m’ = —n(1/p—1/q) de modo que T.J~™ aplica continuamente
L(T™) en si mismo y

T T =)™ fllze S 1T fllze S 1Nz

Por lo tanto, se completa la demostracién.
O

Ademés, se tiene que estos operadores pseudo-diferenciales toroidales son de tipo débil (1,1).
Para ello se demuestra el caso vectorial adaptado del caso euclideano de Alvarez y Milman [3], que
fue extendido al caso toroidal con Cardona en [12].

Teorema 7.1.18. Sea T un operador con kernel valuado en operadores, como en la Definicion
5.1.11, que se extiende a un operador acotado de L*(T™;X) en L?(T™;Y) y de LY(T"; X) en
L2(T™;Y) tal que para algunos o y 3:

1 1 B n n
N P L P 7.1.19
A R EL R B (71.19)
También se asume que su kernel k(x,y) satisface la siguiente condicion cuando |y — z| < o
/ |k(z,y) — k(z,2)|Bx,yyde < C, 0<o <1, (7.1.20)
|z—z|>co>
/\x — 2| > collk(z,y) — k(z, 2)||px,yydz < C, 1<o0. (7.1.21)

Entonces el operador T se extiende a un operador de tipo débil (1,1).
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Demostracion. Sea f € LY(T™; X), sea A > 0 y considere la descomposicién de Calderén-Zygmund
a nivel . Asi

Q={zeT":Mf(z) >\ =] Q;,
j=1

donde M es el operador maximal de Hardy-Littlewood. De modo que se puede definir f = g + b,
aqui fq, es el valor medio de f sobre Q; y

g = fXT”\Q + ZfQJXQJ7
j=1

ZZf fo;)xq, = Zb

Ademas,
lg(@)lx <CX v lgllerrnx) < 1 fllzrrmix), (7.1.22)

/ 1b;(2) || x dz < C|Qj|A, b dz = 0, (7.1.23)
Qj

'ﬂ‘"L
C
12| < *||f||L1(Trn;X)~

De (7.1.22)) se tiene que g € L?(T"; X), y también la desigualdad ||g||L2 T X) S A fllzrern;x)
Entonces, usando la desigualdad de Chebyshev y la acotacién L? de T se obtlene

Nz e T": |[Tg(@)lly > M2 S ITgllLz(rny) S NglZzinx) S Allfllzrcenx)-

Por otro lado, si se establece c{2 como la unién de los cubos c@); con el mismo centro y longitud de
lado escalada, se obtiene

1
[z € e [To@)ly > A/2H < [0 S 5101 e )

Sea o el diametro de Q; y

F=Y"b, G=)> b,

o;<1 o;>1

entonces para un ¢ > 0 adecuado y @, centrados en z;, se obtiene |z —z;| > 40, cuando z € T™\ c€2.
Usando la desigualdad de Chebyshev y ([7.1.23)) se obtiene por ([7.1.21]) las siguientes estimaciones

Mz e T\ eQ: | TG(2)|ly > A/4}|

< / ITG @)y de
T\ c2

S [ W = e sl ) s

o;>1 |x—z;]>40; JQ;

S0 bl dy S 1 o)

oj>1

Ahora, sea ¢ una funcion test soportada en {z € T" : |z| < 1/c} y tal que [¢(x)daz =1 con ¢ > 0.
Definase
1 T
() = =7 <1/a> :
%5 %5

F=> bixgj+ Y (bj—bjxp;)=F +F"

o;<1 o;<1

Se escribe
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Entonces, para x € T™ \ ¢, se tiene que
Tty b+ e)(@) = [ Kby~ [ ko) [ et =) dyde
= [ e = kst = vy by

Por lo tanto, usando la desigualdad de Chebyshev se obtiene

AN{z € T"\ eQ: |TF"(z)|y > A/8}] (7.1.24)

< / ITF" () dz
T \cQ

Z/ . [/ 1z, y) = bz, w) | 5x vy @5 (w — y) dw] b ()| x dy.

o;<1
Cuando x € T\ Q y |y —w| < Ujl-/a se tiene que
v~ w| > o~ 2| ~ |z | ~ |y ~wl > doj —0j — 0}/ > 20,

Asi que se puede estimar ([7.1.24)) por
lw—y|<o; e J|g—w|>20;

o;<1

<y / 16, )x dy < ClL 1L ono.

o<1
Ahora, solo queda probar la desigualdad
Az € T\ e [TF @)y > A/8H < Ol o)
lo cual se probaria si se obtiene la estimacién
1T F 12 m.x) < AMFIlLr rmi), (7.1.25)

donde J es el potencial de Bessel de orden uno. Dado que § satisface ((7.1.19)) se tiene que T'J? es
acotado en L?(T™;Y) y

ITF N2 roiyy = ITTP TP Fa(pniyy S NTTF | Laiznx) S Allfllzronix).
Por lo tanto, se puede usar la desigualdad de Chebyshev para obtener
Nz e T\ eQ: |TF (z)lly > \/8} < / . ITF' ()|} dz S Al fllrcen;x)-
T\ c2

Recuerde que

= Z fXQj * Q5= Z fQjXQj * Py

o;<1 o;<1
Se define x ~ Q; si x pertenece a la clausura de cualquier cubo Q) adyacente a @;. Asi,
TN fxa, xei@) = D T P(fxq, xe)@) + Y T (fxq, ¢)(@) = Fi(z) + Fa(x),
o<1 Q) Q)

De modo que
(JF) (@) = Fi(z) + Fa(z) = > fo, 7 (xq, * ¢) ().

o;<1
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Usando la prueba de Fefferman adaptada a grupos de Lie compactos [14], se tiene que para z ~ Q;

|72 (Fxa, * 0) @) S TPl fa;Ix (xa, * @) (@).

Por ((7.1.23) y el hecho de que J~# mapea funciones positivas en funciones positivas se tiene que

FQ(x) - Z fQjJ_B(XQj *(Pj)(x) = Z J_B[(fXQj - fQjXQj) *@J](‘I’)

o;<1 X o;<1 x
Z J P (b * ;) (x)
o;<1 x
SADY T P(xq, *xei)(x)
o;<1
SAT PN | D2 xq, 95 <A
o<1 Lo (T";X)
ya que los soportes de xq, * ¢; tienen superposicion finita. Por otro lado,
Fo— Y T P fo,xq; * @ <> NI les * (f = fay)xa; Mz om )
o;<1 L1(T":X) o;<1
=53 / 17)lx dy S 17l com )
o;<1
Combinando estas dos estimaciones se obtiene
2
Fy= > T fq,xq, *#i < CM|fllpr(emix)-
i<l L2(T7;X)
Ahora solo queda probar la desigualdad ||Fy||2. (T7:X) S Al fllzr(re;x), lo cual puede hacerse como

en la prueba de Fefferman, [I4]. Para un « € T™ fijo, sea

0 si no.

Ff(x) _ {J_BfXQJ x@i(z) sixoeQ;

Asi, Fi(z) =32, Fl(x) y F(x) # 0 para a lo sumo N valores. Entonces,

1@ < | XA @),

Jj=
N
j(x h(x
<X [, 7w

Y

N
<X 77w, + 7],
jh=1

<ax - [t

2
v
o;<1
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Por lo tanto, usando la desigualdad de Hausdorff—Young se tiene que

IF1 132 znx) < AN Z |7 <4N Z 177 ill 2 sy 3@ 3 oy -

L2(Tm; X)

Por otro lado, por la identidad de Plancherel y dado que —25 < —n se obtiene
_ 2 AN 1
177263 oy = 2 O |(Fre0) (03¢ 2 15y
’ cezn |Qg|

ya que |@;| < 1. Finalmente

AT |Q %, s ov ) S Afllscen -
o;<1 J

Asi, se completa la prueba. O

Teorema 7.1.19. Sea T' € V];(T" x Z"), con 0 < p < 1,0 <5 <1, m < —n[(1 - p)/2 + A,
entonces T es del tipo débil (1, 1)

Demostracion. Note que por el Teorema [7.1.12] se puede tomar g como 2/(2 — p) en la hipotesis
del Teorema [7.1.18] Ademads, tomar « como p y 8 como n(1 — p)/2 satisface la condicion ([7.1.19).
Entonces, en vista del Teorema se obtienen las condiciones necesarias para el resultado [

7.1.2. Continuidad de operadores pseudo-diferenciales en espacios de Le-
besgue pesados LP(w)

Ahora, se presentan los resultados de continuidad de operadores pseudo-difernciales toroidales
para espacios de Lebesgue pesados LP(w), obtenidos con Cardona en [1I]. Estos extienden el caso
euclideano demostrado por Park y Tomita [29].

Sea ¢ una funcion de Schwartz definida en R™ tal que su transformada de Fourier $ es igual a

uno en la bola unitaria centrada en el origen y tiene soporte en la bola concéntrica de radio 2. Sea
1) otra funcion test tal que 1/)(5) = (&) — p(2£) para £ € R™. Para cada k € N, se define

() == 2P (2% ).

Entonces se tiene una particion de la unidad de Littlewood-Paley no homogénea formada por ¢ y
Yk, con k € N. Ademés, note que

suppz//J; C {{ eR": 21 < €| < 2’”1}

B+ () =

keN

Yy que

Asi, se puede descomponer cualquier o € S} (T" x Z") como

(.’L‘ 6) =0 .’B 5 +Z oz 5 1/% 0($,§)+20k($,£),

keN keN

E Uk?

keNy

por lo que se puede escribir

donde 75, son los operadores pseudo-diferenciales toroidales asociados con o} € S (T" x Z").
Ahora, se escriben sus kernels correspondientes (en el sentido de distribuciones) como

Ki(y,u) = Z oy, &)e? e, (7.1.26)
cezn

Ademés, sea &}, la extension del simbolo oy definida en T™ x R™. Primero, se demuestran las siguientes
estimaciones del kernel.
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Lema 7.1.20. Sea 0 < p <1 ym € R. Suponga que o € S} (T" X Z™) y sea Ky, definido como en
. Para N > 0 arbitrario, y 1 <r <2, se tiene que

(1 + 25 |u )N K (y, w)]|] 0 Sav 280/,
(14 25| u) NV Ki(y, w)|| o Swv 28eFman/m),

||(1 + 2kp|u|)NvuKk(yau) L SN 2k(1+m+n/7")’

como funciones de u € R™, uniformemente en y € R™.

Demostracion. Se sigue el argumento de Park y Tomita [29]. Dado que 6 € S}, (T" x R"), entonces
para cualquier multi-indice 8 € Nj se tiene que

‘8§6k(y,€)‘ SPA (7.1.27)

029,50, )|  2XmomelAD), (7.1.28)

‘af[fék(yyf)]’ < ’é‘ ~ affnc(yvf)‘ +y° (a?*jék(y,g)‘ < k(m+1-pIBl) (7.1.29)
j=1

ya que (¢) ~ 2F. Ahora, se usa la desigualdad de Hausdorff-Young y ([7.1.27)para obtener que

1(2*w)° Koy, w| .

po S 29006
_ okplBlok(m—p|Bl)gkn/r

— 2k:(m+n/r)’

ya que el volumen del soporte de &, es comparable con 2. Ademas, aqui la norma L" se toma con
respecto a u € R" y la norma L” se toma con respecto a £ € R™. Esto concluye la demostracién de
la primera estimacién, las estimaciones restantes pueden probarse usando el mismo procedimiento y
las estimaciones (7.1.28) y (7.1.29) respectivamente. O

Ahora, se demuestran algunos lemas de acotamiento ttiles.

Lema 7.1.21. Sea 1 <7 <2, sea0< p<7/2, sea0<p <1, yseam=—n(l—p)/r. Entonces
para todo o € S (']I‘” X Z™), su operador correspondiente T, es continuo de L" en e,

Demostracion. Note que se tiene r < 2 < r/p y m satisface las condiciones del Teorema(7.1.17} [
Para manejar el caso p > /2 que no se considera en el lema anterior, se demuestra lo siguiente.

Lema 7.1.22. Sea 1 <r <2, sear/2<p <1, yseam=—n(l—p)/r. Suponga que k € Ny y

2p—r
2—r

<A< p.

Entonces todo o € S, (T" x Z") satisface

~

1—p
o fIl ran S RIS || £ e

para f € C°°(T").
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Demostracion. Se usa la estrategia de Park y Tomita [29]. Se define
ap(z,€) = 6, (27, 22F¢).
Entonces para cualquier multi-indices «, 8 € N{}, se obtiene que

10507 ar(w, €)] = 2 I7I710D 93976 (27, 234¢) |

< UBI=lagktm—p(8I=lal)y o) o6 amy

= == NB=lably o

< (¢) x5 Bl lal)

donde la constante es independiente de k. Por lo tanto, se tiene que

ar € STX (T x R")
T=X"T—=X
uniformemente en k. Note que
p—A 1 m n p—A
r—4 A (N T A
0<T=3<2 ¥ 1-a 7“( 1—)\>’

r(1—X)
lo que permite emplear el Lema|7.1.21] y obtener la continuidad L"-L™»=*" para los operadores Ty,
uniformemente en k. Dado que se tiene que

Ty f(2) = Ta, (f(2_)\k'))(2>\kx)a

se puede obtener que

P

— —A p—
I To FIl ramny = 27720 | Ty (FRTM*DI s
L p—X L p—x

P

< 2R | p2 M|

Lr
_ Q—Ank%Q)\nk/erHLT
_ 2)\nk;<1lip>\) Hf”L'r

Asi, completando la demostracion. O

Ahora, sea P una dilatacién concéntrica de @ con ¢(P) > 10/nf(Q) y sea xp su funcién carac-
teristica. Ahora, se considera

f=TIxp + fxnip = o+ f1, (7.1.30)

de modo que
Takf = Ta'kfo +T0'kf1'

Proposicion 7.1.23. Sea 0 < p <1, seal <r <2, y sea m =—n(l— p)/r. Suponga que x € Q.

1. Sea 0 < p <r/2, y sea k € Ng. Entonces todo simbolo o € S)",(T" x Z") satisface

P
1 1/r |:€(P) :|n/r
1T, fo(y)|"d < M, f(z). 7.1.31
(g1 [ motoran) < |55 Moso (7.131)
2. Sear/2<p<1, sea 22”:: <A< p, yseak € Ng. Entonces todo simbolo o € S}, (T" x Z")
satisface

1 1/r 1 E(P) n/r
— T, "d < [2ky ey { ] M, f(x). 7.1.32
(i1 | mpotwras) - <) Ok Merte) (7.1.32)
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Demostracion. Primero, se considera el caso 0 < p < r/2. Por la desigualdad de Holder y el Lema

[71:21] se tiene que

1 1/r 1
(@/QITokfo(y)dy> < WHTUJOHW

f(Q)np/T ||fXP||LT

i } M, /(@)

ya que ¢z € Q C P. Por lo tanto, probando ([7.1.31). Ahora, se asume que r/2 < p < 1. Por la
desigualdad de Hélder y (|7.1.22]) se obtiene que

A\

1 1 N
<LQ|/Q|T”f0(y)|dy> §|Q| T&i/\) ”TzrkaH M

S UQ) TR AT | fcp oo
Ank —+=2 - — n/r
< 2T Q)TN U(P)M ML ()
o [ep)m"
< 12R0(Q)M A [ } M, f(z).
[2°(Q) ior| M@
Asi, completando la demostracion. O

Ahora se demuestran estimaciones para la segunda parte de la descomposicion como en ([7.1.30)).

Proposicion 7.1.24. Sea 0 < p <1, seal <r <2, sea m=—n(l—p)/r, yk € Ny. Suponga que
z,y € Q. Entonces todo o € S)',(T" x Z") satisface

|To f1(y)| S [2500(P)] "N =P, f (=), (7.1.33)

To 1(y) = T f1(2)] Sav 2°0(Q) (252 0(P)) =N ="/"IM, f (), (7.1.34)

para cualquier N > n/r.

Demostracion. Primero, se considera (7.1.33). Sea N > n/r, y sea y € Q. Por la desigualdad de
Hélder se obtiene que

Ty, foy)] < / K,y — )| ()] du

n\P

P i) " K.

y—-17"
o)y~ [z(P)} X1\ P

L’
La norma L" puede estimarse usando Lema |7.1.20| por

LT

— Py || ¥ Kuy )

LT./

Hf(P)”/T ] s

L’
(P)~ ==kl || (14 28] YV Ky, -

14
g( )—(N—n/r)z—kpNQk(m+n/r)
= gy,

M

IZANVAN

Por otro lado, la norma L" puede estimarse notando que para z,y € Q, y para u € T™ \ P, se tiene
que
ly—ul > |z —u| — |z —y| = Cpll(P) + |z — ul].
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Asi, para N > n/r, se obtiene que

|z —

rN 1/r
< QP)" "1 "d
N<W ey e Bt sl u>
S M, f().
Asi, se combinan ambas estimaciones para obtener ((7.1.33]). Ahora, se considera (|7.1.34) usando una

demostraciéon similar al caso anterior, definiendo ahora

y—-17"
Py [g(m} fxTo\p

Lr

Hk(yaxvu) = Kk(yvy - ’LL) - Kk(l',if - 'LL).

Asuma z,y € Q y N > n/r. Usando la desigualdad de Holder, se tiene que

n

(T f1(4) — T ()] < / 1)

_N
i |BA e

N
K(P)n/T |:|y:| Hk(y,x, ')XT"\P €<P)

((P)

L’ L

Se estima el primer factor usando el Lema [7.1.20] por

ly—-1"
‘K(P)n/r {Z(P)} Hy(y, z, ')X'ﬂ‘"\P

’

LT

y 11"
< la@upyr H(P)] 9L, = diee

!

S UQ)e(p)~ N /0 [ly(8) =¥V K (y (1), y() = )|

Lot

o dt

1
S E(Q)E(P)‘(N_n/r)z—kpN/ (1 + 24 - )N [V ((8), )],
0
S UQ)(P)~N=n/mg=keNok(ltmtn/r) — cokp(Q)[2kre(P)| =N =m/m),

donde y(t) :=ty + (1 — t)x € Q de modo que |y — x| < |y(t) — u| para u € T™ \ P. Para el segundo
factor, se usa la misma estimacién que en el caso anterior, completando la demostracion. O

Se procede a demostrar el teorema principal de esta seccién, del cual se seguira la continuidad
deseada.

Teorema 7.1.25. Sea 1 <7 <2, ysea0 < p < 1. Suponga quem < —n(l—p)/r yo € S, (T"xZ").
Entonces se tiene que

ME(T, f)(2) S M, f ()
para f € C>(T").

Demostracion. Note que es suficiente probar

1 1/r
fuf (|Q /Q |Taf<y>cQ|Tdy) <M, f(2), (7.1.35)

cqgeC

uniformemente en @ y z € T". Ahora, sea P, una dilatacion concéntrica de @ tal que £(P,) =
104/nf(Q)? y se descompone f como en ([7.1.30]). Primero se considerar4 el caso cuando 0 < p < r/2.
Entonces, el lado izquierdo de ((7.1.35)) es menor que la suma de

1 N 1/r
Ty - (@| /Q T fo )] dy)
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1 1/r
77 := inf —/ T,f1—¢ ’”) .
= it (i o o
Usando la desigualdad de Hélder y el Lema [7.1.21] se puede verificar que

1 1
- oy < - , <
IO S |Q|p/T||TGf0|Lr/p ~ E(Q)np/""lePPHL NM"’f(x)

Para estimar Z;, se establece

cqi= Y T, filz), (7.1.36)

k:2k0(Q)<1
por lo que se tiene que

T5 f1(y) — cql < Z T, [1(y)| + Z T, f1(y) — Toy f1(2)]-

k:2k0(Q)>1 k:2k0(Q)<1

Primero, se estima la primera suma usando (7.1.33) por

Yo T AWIS DD RMQ)ITPNTYIM, f(z) S M, f (@),

k:2ke(Q)>1 k:2k0(Q)>1

yaque p >0y N >n/r. Luego, se aplica (7.1.34) para estimar los términos restantes por

S T AW -To i@ Sx S QTN TYOM, f(a) = OM, f(2),

k:2k0(Q)<1 k:2k0(Q)<1

cuando se elige N < n/r + 1/p. Asi, completando la demostracion cuando 0 < p < r/2. Ahora, se
considera el caso r/2 < p < 1. Se puede estimar ([7.1.35)) por la suma de

r 1/r

1
jl ;= Inf 7/ Z Tcrkf(y) —CQ dy ’
Q

cqeC | Q] k:2k0(Q) <1

2= ¥ (g /. |Takf<y)|rdy)1/r,

k:2"0(Q)>1,
2,k p(Q)<1

VEEDS (@ /Q |Takf<y)rdy)1/r.

k:20R0(Q)>1

Primero, se establece 2;:: < A < p para el resto de esta demostracion. Luego, se usa la misma

descomposicién por P, como arriba y se usa cg como se define en (|7.1.36|) para estimar J; por

> [(@ [ nora)” (4 ] |Takf1<y>—Tgkh(xnrdy)m].

k:2k0(Q)<1

Usando ([7.1.32)) se obtiene que

1 v k An =L
(|Q /Q |Takfo<ywdy) < RMUQPTTE M, £ (2).

Ademas, se emplea (7.1.34]) para obtener que

To f1(y) — T, fu(@)] S [280(Q)]) PN /M, £(2).
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De nuevo, se elige N < n/r+1/p, para obtener una cota uniforme y completar la demostracion para
el primer término. Para el término J5, se elige un nimero positivo € tal que

L—p
P —
<1 — /\> <e<p,
que se sabe existe ya que A\ < p. Ahora, se define P.; como la dilatacién concéntrica de Q con
(P 1) = 10VE(Q)[2"(Q)) <. Note que
10vnl(Q) < (P k),

ya que es equivalente a
p(l—p+te)
€

2°50(Q) <1

lo cual es cierto ya que

y 2°%(Q) < 1. Entonces, se considera
f= fXPE,k + fXTn\PE,k =: for + f1,k~
Por lo tanto, por (|7.1.32)) se tiene que

Ademés, por (7.1.33)) se obtiene que
To fr ()] S [2500(Pe )M, f ()

< @@y e@) )T M, f(x)
< [2b4(Q)) "IN =IO, f(a),

(N—=n/r

donde N > n/r. Por lo tanto, se tiene una cota uniforme para el segundo término. Ahora, se considera
Js. Para este caso se usara P como la dilatacion concéntrica de @ tal que £(P) = 104/nf(Q), y se usa
la misma descomposicion que en (7.1.30). Note que dado que (£) ~ 2¥ en el soporte de oy, entonces
se tiene que
kn
27 (0=Pg, € S;g(l—p)(l/r—lﬂ)('ﬂ‘" x Z"),

uniformemente en k. Por lo tanto, el Teorema implica la acotacion L" para cada T,,, y se
obtiene que

Lr

1 1/r 1
Ivall o "d < ——||T,
(g1, et ) < i o)

< 9=t (1-p)

1
gy el

(A=PIM, f ().

_kn
2

<2
Por otro lado, se emplea (|7.1.33)) para obtener que
T fr(y)| S [2%0(Q)) N7/ DM, f (),

donde N > n/r. Por lo tanto se concluye que J5 < M, f(x), y se completa la demostracion. O
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Ahora, se aprovecha el Corolario [5.1.33] y el Teorema para obtener el siguiente resultado
de continuidad.

Corolario 7.1.26. Sea 0 <d<p<1l,seca0<p<1,seal <r <2 ysear <p<oo. Suponga que
m < —n(l—p)/ryoeS(T" xZ"). Siw € Ay, entonces

176 fllLrw)y S N FlLe(w)s
para cualquier f € C*(T™).

Demostracion. Primero, se considera el caso p > r. Por lo tanto, se obtiene que

1T fllpew) S IME(To )l 2oy S IMeFllzew) S N 2ew)-

Ahora, se considera el caso p = r. Entonces, en vista del Corolario para w € A; se sabe que
existe € > 0 tal que
st S Al.

Para cualquier r < gy < 0o, la teorfa de encaje para pesos A, implica que w'*e € Ago/rs Y POT U
argumento similar al anterior se concluye que

175 fll oo (wi+ey S I fllLao (wr+ey-
Ademas, del Teorema se tiene que

1T fllza S ([ fllza,

para cualquier 1 < ¢; < r, porque m < —n(1 — p)(1/q1 — 1/2). El resultado deseado se sigue del
argumento de interpolacién como en el Teorema [5.7.8] O

7.2. Continuidad en espacios de Sobolev

Primero, se revisita la definicién de espacios de Sobolev utilizando los operadores pseudo-diferenciales
que han sido definidos en apartados anteriores.

Definicion 7.2.1 (Espacios de Sobolev). Sea s € R, entonces se dice que f pertenece al espacio
de Sobolev W (R"), si J°f € LP(R"), donde 1 < p < ooy J* es el potencial de Bessel de orden s.
Ademas, se define la norma

1wz = 11" Fllze-
Ahora, se extiende el resultado del Teorema para estos espacios.

Teorema 7.2.2. Sea T € VT'((R" x R") sea un operador pesudo-diferencial de orden m € R.
Entonces, el operador T se extiende a un operador continuo desde el espacio de Sobolev W~ (R™)
hacia W, (R™), con 1 < p < oo.

Demostracion. Note que J°~™TJ~° es un operador de orden cero, por lo que es continuo en LP, en
vista del Teorema [7.1.4] Por lo que se tiene que

[ llws=m =17 T flloe = (|57 TT 72T flle SN flle = (£ llw-
Completando la prueba. O

Ahora, se demuestra que la definicién revisitada de espacios de Sobolev coincide con la definicion
para regularidad entera que se dio anteriormente.

Teorema 7.2.3. El espacio W;(R") coincide con el espacio W;,“(R”), para 1 < p < oo, cuando
s =k es entero, con equivalencia de normas.
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Demostracion. Se utilizara k para simplificar la notacién. Para |a| < k, se tiene que 02J % es un
operador pseudo-diferencial con simbolo (27i¢)*(¢)~*, y orden |a| —k < 0. Entonces, por el Teorema
se puede concluir que son acotados en LP, y que

SN0 e = > M08 T F T flee S 1T Fllee = [1Fllws-
|| <k || <k
Por otra parte, se tiene que el operador con simbolo

—1

R k « .
pk(f) T <£> alzgkg S C < ’

es acotado en LP. Por lo que
1 fllws = 15 Fllo = 17T Ty, £l o
S T fllee
=7 (Eer@),,
<Y IFHE T
S D ol

|| <K

Lo que completa la prueba de equivalencia de definiciones. O

La definicién de espacios de Sobolev también puede realizarse mediante el potencial de Bessel en
el caso del toro.

Definicion 7.2.4 (Espacios de Sobolev). Sea s € R, entonces se dice que f pertenece al espacio
de Sobolev W;(T"), si J°f € LP(T"), donde 1 < p < 0oy J* es el potencial de Bessel de orden s.
Ademas, se define la norma

I llwg = (1% fllze-
Ahora, se extiende el Teorema a espacios de Sobolev.

Teorema 7.2.5. Sean 0 << 1,0<p<1,meR, yT € ‘Il;'f5(71‘" x Z™). Entonces, T se extiende
a un operador acotado de W5 (T") en W;=#(T") donde 1 < p < q < oo, para cualquier s € R,
cuando

1.1<p<2<qy
1 1
p>m4n{—-———-—+A]|,
p q

2.512<p<qy

3. sip<qg<2y
1 1 1 1
u>m+n{—+(1—p)(—)+)\],
P g q 2
donde X\ := méax{0, (6 — p)/2}.

Demostracion. Se observa que J*#TJ~* tiene orden m — i, que satisface los requisitos del Teorema
implicando su continuidad LP-L4. Por lo tanto, se obtiene que

1T fllwe—n = ITT>T fllyg=n = IS TT T fllza S NI fllze = (1 Fllwy-

Asi, se completa la demostracion. O
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7.3. Continuidad en espacios de Hardy

Aqui se presentan los resultados de continuidad de operadores pseudo-differenciales toroidales
desde espacios de Lebesgue LP hacia espacios de Hardy HP?, y de espacios de Hardy H? en si
mismos, ambos para p < 1. Estos fueron obtenidos con Cardona [10], y extienden el caso eculideano
demostrado por Alvarez y Hounie [2]. En el analisis posterior, se define la siguiente descomposicion
"diddica’ en los anillos

Aj(z,o)={zeT": 20 < |z —2| <20}, j=1,2,3,.. (7.3.1)

Nota 7.3.1. Note que T™ esta contenido en cualquier bola con radio mayor que y/n/2. Por lo tanto,
para cualquier o > 0 dado, existe N, € Z™ tal que

20 o

(7.3.2)

Asi, esta descomposicion diadica’ es finita en el caso del toro y 2Ve ~ g1,

7.3.1. Continuidad de operadores pseudo-diferenciales de H? en L”

Primero, se considera el caso general para operadores con kernel valuado en operadores.

Teorema 7.3.2. Sea T un operador con kernel de valuado en operadores k := k(x,y) que satisface
para algin 0 < w <1 las estimaciones

/ lk(z,9) — k(@ 2) sy de < C279, si o> 1; (7.3.3)
Aj(z,0)

k(x,y) — k(x, 2)||gxyv)dz < C2-iwlaged=r/e) o 51, 7.3.4
(X,Y)
Aj(z,07)

para ly — z| < o y cualquier 0 < v < a < 1. Ademds, suponga que el operador T se extiende a un
operador acotado de L*(T™; X) en L?>(T™;Y) y de LY(T™; X) en L?>(T™;Y), donde

,  para algin (1 —a)= << (7.3.5)

SE
SIE

n
Entonces, el operador T es acotado de HP(T™; X) en LP(T™;Y), para 1 > p > po cuando o < 1,

donde
11 N Blw/a+n/2)

o 2 nw/a—w+p)’
yparal>p>py=n/(n+w) cuando a = 1.

Demostracion. Se fija 0 < p <1y sea a un (p,o0)-atomo soportado en la bola B(z, o). Primero, se
asume que o > 1, entonces se emplea la descomposicion diddica y la propiedad de cancelacion de a
para obtener

/ | Ta(2)| de < /B RCCEIRE

N, P
w3 ( [ k) —k(x,zngna(y)nxdy) a
j=1 Aj(z,0) B(z,0)

=0 + 1
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Usando la desigualdad de Holder con exponente 2/p, y la continuidad L? de T se obtiene

p/2 (2-p)/2
ns ([ imaia) ([ e i)
Tn n

= HTa||1£2(Tn;Y)|B|(2—p)/2
< Nl gy | BICP?

< |B|(pf2)/2|B|(27p)/2 <C.
Para I, se usa la desigualdad de Holder con exponente 1/p y las estimaciones del kernel de la

hipétesis para obtener

No

p
B [ ([ e -k lsBay)
; Aj(z,0) B(z,0)

Jj=1

No p
> (/ / |k(z,y) — k(z, 2)||5 dz dy) </ |B|~ V(=) dm)
Jj=1 B(z,0) JA;(z,0) Aj(z,0)

<) 2PIBP B THA (2, 0) 7

1-p

IA
2

.
* 1

9—iwpgnp . g—ngin(1-p) zn(1-p)

A
21

giln—(n-+w)p]

)

<.
Il
—

que puede acotarse por una constante C' > 0 siempre que

n n

p> (7.3.6)

n+w  ntw/a

Ahora, se considera el caso o < 1. Entonces

/T |Ta(x)|t dz < / ITa(@)|l% de

B(z,207)

No P
+Z/ </ k2, y) — k(z, 2)|[lla(y) || x dy) dx
j=1 Aj(z,07) B(z,0)

=I + I,

con v por elegir més tarde. El primer término puede estimarse usando la desigualdad de Holder con
exponente 2/p y la acotacion L9-L? de T para obtener

p/2 (2—-p)/2
ns ([ raiRas) ([ e a)

= |Tall72 (pn 3| B(2, 207)|GP)/2

5 ||aHI[),q(’]1‘n;X)Un’Y(2_p)/2

p/q
< / |B|—q/p o (2=p)/2
B(z,0)

< g ng™/a5m(2=p)/2 _ snlv(1-p/2)+p/q—1]
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Asi, dado que 1/qg = 1/2 + 3/n se puede concluir que I; estara acotado siempre que

2n — p(n + 2p3)
Y2 —n(2 —p) )

que es una funcion decreciente de p y alcanza v > 1 — 28/n cuando p = 1. De ahi el requisito
B > (1 —a)n/2. Por otro lado, usando la desigualdad de Holder con exponente 1/p y la estimacion
del kernel de la hipotesis, se obtiene

o p
/ ( [ Gy~ kw2l B dy) da
Aj(z,207) B(z,0)
p
(/ / |k(z,y) — k(z, 2)||5 dxdy) (/ |B|~1/(-p) dx)
B(z,0) J Aj(2,207) Aj(z,207)

2—pr/a wp(l=v/e)|B|P . | B|~ YA;(z,207)17P

(7.3.7)

2

P

IA

1-p

M7 107 1M

<
Il
—_

2
2

o

g—jwp/a wp(l—y/a) znp  —ngjn(l1—p)on(l—p) ny(1-p)

IA

1

<.
Il

— g lp(ntw/a)—n]+p(ntw)— ZQM (ntw/a)p]

Ahora, dado que p debe satisfacer (7.3.6)), se tiene que n — (n + w/a)p < 0. Por lo tanto, se puede
acotar la suma geométrica por una constante y obtener que

Iy < o pntw/a)—nlp(ntw)—n.

que puede estimarse por una constante siempre que

p(n+w)—n

S A (7.3.8)

que es una funcién creciente de p que alcanza *y < « cuando p = 1. Por lo tanto, el pg critico ocurre
cuando se igualan los lados derechos de (7.3.7)) y (7.3.8]), completando la demostracion. O

Ahora, se demuestra que bajo ciertas condiciones, los operadores pseudo-diferenciales toroidales
satisfacen las estimaciones del kernel necesarias para usar el teorema anterior.

Teorema 7.3.3. Sea T € V';(T" x Z"), 0 < p < 1,0 <8 <1 con kernel k := k(z,y). Entonces,

a) Sioc>e>0,yj=123,..,

sup / |k(y,z) — k(z,2)|dz < C.277, (7.3.9)
ly—z|<o JAj(z,0)

sup / \k(z,y) — k(x,2)|de < C.277, (7.3.10)
ly—z|<o JAj(z,0)

donde C. no depende de o, j, 0 z.
b) Sim < —n[(1-p)/2+7,0<y<1,0<1,yj=1,2,3,..,

sup / k(z,y) — k(z, 2)|de < C279/Pgt=7/P, (7.3.11)
Aj(z,07)

ly—z|<o



CAPITULO 7. CONTINUIDAD DE OPERADORES PSEUDO-DIFERENCIALES 93

c) Sim<—-n(l-p)/2,0<y<1l,0<1,yj=1,2,3,..,

sup / k(y,z) — k(z,z)|de < C27/Pgt=7/P, (7.3.12)
Aj(z,a’Y)

ly—z|<o

Demostracion.  a) Por el Teorema|7.1.11]y la desigualdad triangular se tiene que

/ Ik(y, @) — k(z,2)] de < / Ik(y, 2)| d + / Ik(z,2)| da
Aj(z,0) Aj(z,0) Aj(z,0)

S ey Mok [ eV
Aj(z,0) Aj(z,0)

para algin N > (m +n)/p. Ahora, se tiene que |z —y| > |z — z| — |z —y| > 290 — 0 > 29710,
Asi, dado que el toro tiene volumen uno, se obtiene que

[ k) = k)l de S (217 10) N o (20)
Aj(z,0)
< (2e) N <27

Sea p := p(x, &) el simbolo correspondiente de T' definido en T™ x R™, ver el Teorema [6.2.18
Sea ¢ € C§°(R) soportada en [1/2,1] tal que

0o 2
/ <P(1/t)/tdt:/ e(1/t)/tdt = 1.
0 1

Se define
Bat) = [ 045,000 /0 dt,
de modo que

M) = [ bedt= [ ka0
0 1

Para 0 < v <1, se tiene que

/ k(. y. ) — k(z, 2, 8)| d <
Aj(z,07)

1/2
/ (1+t2"|x—z\2)7Ndm ,
Aj(z,07)

donde N > n/2 es un namero natural por determinar. En el Teorema[7.1.14 se demuestra que
el lado izquierdo estd dominado por

1/2
[/ (1 + 2|2 — z|2)N |k(2,y,t) — k(z, 2, )2 dx}

ot -tP"2% si ot < 1.

De aqui viene la restricciéon de orden. Para estimar el segundo factor, se define
2r 1/2

F(r)= {/ (14 s2)"Ngnt ds] , 0<r<oo.

T

n/2 n/2—N

Note que F es una funcion suave, tal que F(r) ~ r cuando

r — 00. Por lo tanto, se obtiene que

1/2
/ (1+t2p|zfz|2)_N
AJ‘(Z,O"Y)

cuandor — 0y F(r) ~r
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1/2
< [/ (14 %]z — z|2)7N (tPlx — 2|)" (P2 o) T da
Aj(z,07)

StTP2R(P2 7).

Asi, se tiene que
/ |k(x,y,t) — k(z, 2,t)|de S toF(1P2707), to < 1.
Aj(z,07)
Ahora, se considera el caso to > 1. El calculo hecho en el Teorema , muestra que
/ |k(z,y, )| + |k(z, 2,0)| dx < (1727 07)"/27N.
Aj(z,07)
Combinando las dos ultimas estimaciones se obtiene que

Ij(:l;,Z,t) = / |k(l‘7y,t) - k(x,z7t)|dz
Aj(z,07)

1/o , S
<C / taF(tP2ﬂa’Y)/tdt+/ (tP2I ") 2 N Jedt| . (7.3.13)
1 1

/o

Ahora, se elige N de modo que p(N —n/2) > 1, lo que implica que [ F(t*)dt < co. Ademés,
de (7.3.13) se obtiene que la integral I;(y, z,t) puede estimarse por

2=i/pgl=v/p 4 9i(n/2=N) (A=v/p)p(N=n/2) < o=ilpgl=7/r (< g < 1.

Asi, completando la demostracion de este caso.

¢) Se puede usar el mismo método que en el caso anterior para estimar (7.3.12)) cuando to < 1.
Ademas, inspeccionando la demostracion del Teorema [7.1.14]se puede ver que se puede estimar

como sigue
/ Ik(y, ) — k(z,2)| dz
Aj (21‘77)
1/o ) 50 -
<C / toF(t’2767)/tdt + / (tPQJUW)n/%N atl
1 1/o
Obteniendo el resultado deseado. 0

Se procede a usar estas estimaciones y Teorema para obtener la acotaciéon HP-LP para
operadores pseudo-diferenciales toroidales.

Teorema 7.3.4. Sea T € \Ilgfé(’ll‘" XZ"),0< p<1,0<4§<1. Suponga que

n
<B <35

m < —f —n\ para algin (1 —p) 5

n
2
Entonces, el operador T es una aplicacion continua de HP(T™) en LP(T™) para 1 > p > po cuando
p <1, donde

1 1 1 2

1_1, 804/p+n/2) (7.3.14)

po 2 n(l/p—1+p)

ypara 1 >p>py=n/(n+1) cuando p = 1.
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Demostracion. Note que por Teorema el operador T satisface las estimaciones del kernel con
a=pyw=1.Laacotacion L? se demostro en el Teorema[7.1.12} dado que m < —n\. Asi, el tnico
requisito del Teorema que se necesita probar es la acotacion L9-L%. Note que J~# es acotado
de L(T™) en L?(T") por la desigualdad de Hardy-Littlewood-Sobolev. Por lo tanto, dado que J*T
tiene orden m + 8 < —nA, se obtiene que

ITf e = 172 T) flle SUIT) fllze S 1z (7:3.15)
Asi, completando los requisitos para obtener el resultado deseado del Teorema [7.3.2] O
Nota 7.3.5. Note que para p =1y 8 =n(l — p)/2 se obtiene la continuidad H!-L! demostrada en
el Teorema [7.1.15)

7.3.2. Continuidad de operadores pseudo-diferenciales en H”

Ahora, se introduce un objeto con propiedades similares a los 4tomos en HP.

Definicion 7.3.6 (Molécula). Para un espacio de Banach Y, se dice que M : T" — Y es una
(p, 8, u)-molécula relacionada con la bola B(z,0) C T™ si satisface lo siguiente:

s Sioc>1:
(M)
[ 1@ do 0707210,
Ms) Para algin 2n/p —n < u < n+ (2w/«), se tiene que
(M2) g p 2 ; q

[ 1M o a5 orent=2in)

s Sio<1:
(M3)
[ 131@) R do s om/-21m),
(M5) Para algin 2n/p —n < pu < (28/(1 —0)) < n+ (2w/a), se tiene que

JIM@)R o - 2 do g ontt/a-2im,

donde 5 L1
pg"2rw-8_ . o L_1. 8
n/24+w/a g 2 n

Ademas, debe satisfacer la propiedad de cancelacion, a saber, que [ M(z)dxz = 0.

Se demostrara que la imagen de un atomo (p,2) es una molécula adecuada. Por lo tanto, para
dar sentido a la propiedad de cancelacién de una molécula, se demuestra el siguiente lema.

Lema 7.3.7. Cualquier (p,0,u)-molécula M := M(zx) relacionada con una bola B(z,0) es una
funcion absolutamente integrable.

Demostracion. Primero, se asume que o > 1. Entonces, usando la desigualdad de Holder y (M) se
tiene que

/B M@y de < M@ ol
z,0

< gn(1/2=1/p) gn/2 < | g-1/p,
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Por otro lado, por la desigualdad de Holder y (Ms)

&= 217X ey ()]

/ |M(@)lly do < |[M(@)]z - 272 H
B L2(TY)

< gh/24n(1/2=1/p) | ;(n—p)/2
< gn(1-1/p) < |B|1*1/”.

Por lo tanto, M(z) € L' cuando o > 1. Ahora, se asume que o < 1. Usando (M) y la desigualdad
de Holder se obtiene que

/B M@y e < M) e Do
z,0

< gn(/a=1/p) . Gn/2

< |B|1/q—1/p+1/2 - |B‘/3/n+1—1/p7

donde se uso el hecho de que 1/¢ =1/2 4+ §/n. Usando (M}) se obtiene que

Lo M@y do < M) - o
T\ B(z,0)

< gOn/24n/a=1/p)  G(n=p)/2

: H |z — 2| ™%X\ B(2,0) (33)’

L2(Tn;Y L?

~ ‘B‘ﬁ/nﬂ—l/p—(l—@)u/%_

Asf, M(z) € L' también cuando o < 1, completando la demostracion. O

Ahora, se demuestra que la norma HP de una molécula solo depende de las constantes relacionadas
con ella. Esto sera tutil al demostrar que la norma HP? de la imagen de un (p, 2)-atomo bajo un cierto
operador es uniforme.

Lema 7.3.8. Sea M := M (x) una molécula (p, 0, n) relacionada con B(z,0). Entonces,
No
M(x) =) Ajaj,
=0
donde a; es un (p,2)-dtomo soportado en B(z,27% o). Ademds || M| ge(rn,yy solo depende de las

constantes en la Definicion [7.3.6]

Demostracion. Sea B; = B(z,27'0) y sea M; el valor promedio de M(z) en A;(z,0). Note que
Aj = Bj \Bj—1~ Se define
¥j(x) = [M(x) — Mj]xa, (),

que esta soportada en Bj y tiene valor promedio cero. Ademaés,

12 gy < 22 / 1M (2)|)3 da.

Aj(z,0)

Ahora, se asume o > 1 y se usa (M) para obtener

[l S [ 1Ml = 21— 2| do
Aj(z,0
< ghtn(1=2/p)  9—ju —n
< 9=iln+n(1-2/p)] |Bj‘1—2/p.
Por lo tanto, se tiene que

Hd’j”m(w;y) < 2*7'[#/2+n(1/2*1/p)]|Bj|1/271/p_ (7.3.16)
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Por otro lado, se tiene que

m m

M(2)XB,,(x) = Y_v;() = Mjxs, (),

Jj=0 Jj=0

donde el lado izquierdo converge en la norma L? a M (z) 72?;0 1;(x). Para estimar el lado izquierdo,
se define una sucesion {v;}, j = —1,0,1,2,..., N, por

y,lz/M(x)dx:Q Vj:/ M (z) dz.
T\ B;

Entonces se tiene que

N, N, No—1
> Mixa, =Y (wim1 —v)lA; 17 xa, = D 65— vn, [AN, T Xan, -
j=0 §=0 §=0

donde ¢; = v; (|Aj411 7 xa,,, — [4;]7 x4,)- Se puede notar que cada ¢; esté soportada en Bjy1 y
tiene valor promedio cero. Ademads, se puede usar el método usado para 1; para obtener

D5l L2 (Tmvy S 2_]'[”/ZJFTLO/Q_I/’))]|]-L3j+1|1/2_1/p. (7.3.17)

Ahora, se tiene que vy, = 0 gracias a que By, contiene el toro, ver la Nota Por lo tanto se

tiene que

M(z) = po(x) + ) [t (@) + ¢j-1(2)], (7.3.18)

[

=1

p, 2)-atomo por ([7.3.16)) y (7.3.17)). Ahora, se asume

—~ <

donde cada término puede reescribirse como un
o < 1y seusa (M}) para obtener

[l S [ 1Ml — 21— 2| do
Aj(z,0
< gOntn(/a=1/p) L 9=ing=H

< 9-dlit2n(1/2-1/p)] Gu(0=1)+20(1/4-1/2)| g [20/2-1/p),

Por lo tanto, se tiene que

951l 2y S 271’[#/2+n(1/2*1/p)]Uu(0*1)/2+n(1/qfl/2)|Bj|1/271/p_

El exponente de o se convierte en (6 —1)/2+ 8, de ahi la restriccion p < 26/(1 —6). Por otro lado,
l@;ll2 puede estimarse de manera similar para obtener la expresion (|7.3.18) para o < 1. Ahora, se
puede considerar la norma HP de M. En este caso, se tiene que

AP < ng[n(lfpﬂ)*#p/?]’
Por lo tanto || M || g»(rryy < C siempre que p > np/2 —n. Asi, completando la demostracion. [

Se procede a definir una condiciéon para operadores con kernel valuado en operadores que sera
atil para demostrar propiedades de continuidad para estos operadores.

Definicion 7.3.9 (Condicién D,,). Sea 1 < r < ooy 0 < a < 1. Se dice que un operador
T:C®(T™; X) — C°(T™;Y) satisface la condicion D, , si su kernel valuado en operadores asociado
k := k(z,y) es continuo fuera de la diagonal de T" x T™ y existe una sucesion {d;} € ¢*, tal que
para todo o > 0 se tiene que

1/r
(/A( )||k($,y)—k($,z)||%dfﬂ> < djl Ay (2,07, G=1,2,,

siempre que |y — z| < 0. Ademés, también se requiere que k(x,y) := k(y, z) satisfaga estas estima-
ciones.
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Un caso limite de esta condicién se enuncia de la siguiente manera.

Nota 7.3.10 (Condicién D,,). Se dice que el operador T de la Definicion satisface la condicién
D, sipara algin 0 < w <1, 0 < o < 1 se tiene que

ly — z|“

|k(z,y) — k(z, 2)|8 + |k(y, 2) — k(z,2) |l < C————,
|z — z|ntw/

cuando 2|y — z|* < |x — z| para todo z,y,z € T™.

Ahora, se demuestra un resultado auxiliar que relaciona la funciéon maximal p de Hardy-Littlewood
y el operador maximal sharp.

Teorema 7.3.11. Sea T un operador que satisface la condicion D, o tal que para 1 <p < g <00 y
p/q < « se tiene que

1/q 1p
L 4 x # T p T
<|B<Z,U>| /B(w) T4 ) < (e [ @l as) (7:3.19)

para todo 0 < o <1y
||Tf||LT’(']I‘";Y) 5 ||fHLT’('JI‘";X)a

cuando o > 1, para alguna constante absoluta C' > 0. Entonces, para s = max{p,r'}, se tiene que

(T)*(z) S Msf(z), feL>(T"X). (7.3.20)

Demostracion. Se fija una bola B(z,0) y se escribe f = f1 + fa, donde

1= fXxB(z,200)-

Sea,

= / k(z.9) () dy,

entonces se tiene que

[ rt@-cvaes [ ma@lyde
B(z,0) B(z,0)

Noa
s [ [ k)~ el w)x dyda.
j=1 B(z,0) JAj(z,0%)

Primero, usando la desigualdad de Hoélder y la condicién D, , se obtiene que para j = 1,2, ..., Nga

[ k)~ el ) dy
Aj(z,0%)

1/r
< (/AJ_(Z’UQ) IIk(x,y)k(z,y)sdy> (/A]‘(Z’UQ) 1)l dy>

1/r’
< d;|Aj(z,0%) |7 (/A( )llf(y)|§édy> -

S der'f(Z)~

1/r

Por lo tanto, se tiene que

Nyo
) / /
> 1k(z,y) = k(2 9)|8]f ()] x dy dz
|B(Z70)| j=1 B(z,0) JAj(z,0%)
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S M, f(2).
Por otro lado, se asume o < 1. Entonces, usando la desigualdad de Holder y (|7.3.19)), se obtiene que

/ T f1(z)]y de
(z, a|

1 1/q d 1/4
X

<Aoo [ rh@ge) ([ o

(B(Z>U)| B(z,0) Y B(z,0) |B(Z’0>|

1/p
1
< | P 4
~ <|B(z7aa) B(2,20%) 17 @l x)
S Mpf(z)~

Para el caso 0 > 1 se usa la desigualdad de Holder y la acotaciéon LP de T' para obtener

|/ ITA @)y dz < [B(z o)~ 2T full 1o gnyy

S IB(z, o) P fill o (omx)
S Mpf(z)-

Combinando las estimaciones anteriores se puede concluir que

(TF)*(2) S Maf(2),
terminando la demostracion. O
Ademaés, cuando el operador satisface la condicién D, . se obtiene el siguiente corolario.

Corolario 7.3.12. Sea T un operador como en el Teorema[7.53.11}, pero que satisface la condicion
Dy o. Entonces T es un operador continuo de L=°(T"; X)) en BMO(T™;Y).

Demostracion. Note que r = 1 implica que s = 0o y la estimacién en (|7.3.20) se convierte en

(Tf)#(l“) S Hf”LOO(T";X):
probando el resultado. O

En la hipotesis del siguiente lema se tiene la condicion 7*(€), una contraparte vectorial de la
condicién T'(1) famosamente establecida por David y Journé, ver [I5].

Lema 7.3.13. Sean X,Y espacios de Banach reflexivos, sean T y T operadores con kernels que

satisfacen la condicion D,. También, suponga que pueden extenderse a operadores acotados de
L?(T™; X) en L2(T™;Y) y de LY(T™; X) en L?(T™;Y) de modo que

1

+ para algin  (1—a)= <8< (7.3.21)

q

NN
3™
|3
SE

Ademds, suponga que T*(€) = 0 para todo e € Y' ye :T" — Y’ dado por €(x) = e. Sea a :=
a(x) un(p,2)-dtomo soportado en B(z,0). Entonces, M(z) := Ta(x) es una molécula (p,0,p) con
constantes que dependen solo de T y sus propiedades de continuidad.

Demostracion. Primero, se asume o > 1. Entonces, por la acotacién L? se obtiene que

[ 1M o = ITal sy S lallay, S 1B 5 g=20m),
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probando (Mj). Ademas, se tiene que

/ 1M ()3 |z — 2|F dx < /B o I 21

4 Z/ M@ =1 de

= Il + IQ.
Por (M), se obtiene que
LS / ||M($)H§/0a“ dz < ohtn(1=2/p)

Ademaés, asumiendo z € A;(z,0%), y por la propiedad de cancelacion de a se obtiene que

2
1M ()3 < UB( )Ilk(ﬂf,y)—k(xvz)\\slla(y)llx dy]

2
ly — 2> /
S s la(y)lx dy
o — 22072 | fy 0

o2 . O.2n(171/p)
~ ‘CIJ _ Z|2(n+w/oz) ’

Ahora, dado que p < n + 2w/« se tiene que

Nyo

I, < Z 02w+2n(171/p) . (2j0a)p‘72w/a7n

i=1
< O_a;t+2n(1—1/p)—na

2n(1-1
< ght2n(1=1/p)

dado que > ny a <1, probando (M3). Ahora, se supone que o < 1. Primero, por la estimacion
L9-1? de T, se obtiene que

/IIM(J?)lIdeJU = ITal G2 rniyy S lallZaenyyy < [BPH/a71P) S gnli/ami/p),
probando (M}). Por otro lado, se tiene

[ @l -aran < [ e M) o — 21" do

+ Z/ M@ =P da

=0+ Is.
Como en el caso anterior, se puede usar (M}) para estimar

I < gfnt2n(/a=1/p)

Ademas, cuando = € A, (z, o%) se tiene una estimacion similar a la anterior, a saber que

N,o
12 < Z 0_2w+2n(1—1/p) (2j0_9)p—n—2w/a
j=1
< 0_2w+2n(1—1/p)+0u—0(n+2w/04)

~

= gfnt2n(1/a=1/p)
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dado que

_n(l-1/¢)+w

 on24w/a
Esto completa la demostracion de (Mj). Solo queda probar que [ M (z) dz = 0. Note que |B|~1+1/7q
es un (1,2)-atomo y dado e € Y’ se tiene que

|B|~1+/p <e,/M(m) d:r> :/<é(x),T(|B|*1+1/Pa) (x)>dm
_ / (T7e(e), | B 7 a(a) ) do = 0.

Donde se ha usado el hecho de que T* es continuo en L? para emplear el Corolario[7.3.12] y concluir
que T* mapea L>(T",Y’) en BMO(T"; X'), que es el dual de H*(T"; X), dado que X es reflexivo.
Por lo tanto, se demostré que M (x) es una molécula (p, 8, u). O

Note que las constantes relacionadas de la molécula resultante solo dependen del operador T'.
Ademas, la norma H? de la molécula solo depende de dichas constantes. Por lo tanto, se procede
a combinar los resultados anteriores de esta secciéon para obtener la acotaciéon HP para operadores
con kernels valuados en operadores bajo ciertas condiciones.

Teorema 7.3.14. Sean X,Y espacios de Banach reflexivos, sean T y T™ operadores que satisfacen
la condicion D,. También, suponga que pueden extenderse a operadores acotados de L?(T™; X) en
L2(T™;Y) y de LY(T"; X) en L?(T™;Y) de modo que

1 1
q

2 'n 2
Ademds, suponga que T*(€) =0 para todo e € Y’ ye: T — Y’ dado por &(x) =e. Sea

1 1 2
= M7 (7.3.23)
po 2 nw/a—w+p)

entonces para po < p < 1, el operador T es acotado de HP(T™; X) en HP(T™;Y).

Demostracion. Note que por el Lema la imagen de todo d&tomo HP*?(T"; X) es una molécula
(p, 0, 1) con constantes que dependen solo de T', y por el Lema se tiene que dichas moléculas
tienen normas H? que dependen solo de dichas constantes. Por lo tanto se tiene una cota uniforme
|Ta||gv(rn;yy < C para todo atomo (p,2)-a. Inspeccionando la Definicion se puede ver que
esto ocurre cuando

2/ n/24+w—f
2 —-n<-——, donde O=———.
n/p—mn T onde Wt wla
Asi, se puede concluir la expresion para py establecida anteriormente. O

Ahora, se aplica este resultado en el contexto especifico de operadores pseudo-diferenciales toroi-
dales.

Teorema 7.3.15. Sea T € \I/Zf&('ﬂ‘" xXZ"),0<p<1,0<0d<1. suponga que

m < —f—n\ para algin (1 — p)g <g< g, (7.3.24)
y que T*(1) = 0 en el sentido de BMO. Entonces el operador T es una aplicacion continua de
HP(T™) en st mismo para pg < p < 1 donde
1 1 B(1/p+n/2)

(7.3.25)

po 2 n(l/p—1+p8)
Demostracion. Se puede elegir v = p en el Teorema para obtener la condicién Dy , para Ty
T™. Por lo tanto estos operadores satisfacen la condicién D, con w = 1 (ver la Nota[7.3.10). Ademas,
T es acotado en L? en vista del Teorema y la acotacion L9-L? de T se sigue de( en
la demostracion del Teorema[7.3.4] Asi se ha demostrado que T satisface todas las condiciones para
aplicar el Teorema Lo que completa la demostracion. O
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