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Prefacio

Este trabajo surge del interés por el análisis armónico y su aplicación en el estudio de operado-
res pseudo-diferenciales, particularmente en contextos no euclidianos. La elección del toro Tn como
dominio de estudio responde a su riqueza estructural como variedad compacta y grupo abeliano,
lo que permite abordar problemas tanto locales como globales desde una perspectiva unificada. El
texto está dirigido principalmente a estudiantes e investigadores en análisis matemático que deseen
adentrarse en la teoría de operadores pseudo-diferenciales en variedades compactas ejemplificada en
este trabajo sobre el toro. Se asumen conocimientos básicos de análisis funcional, teoría de la medida
y análisis de Fourier, aunque se incluyen capítulos preliminares para facilitar la comprensión de los
conceptos fundamentales. La obra se divide en tres partes claramente diferenciadas: los capítulos
iniciales establecen el marco teórico necesario; la parte central desarrolla el cálculo pseudo-diferencial
toroidal; y los capítulos finales presentan los principales resultados de acotación. Cada capítulo inclu-
ye la mayoría de demostraciones pertinentes, de manera que este trabajo sea lo más autocontenido
posible.

La bibliografía incluye tanto referencias clásicas como contribuciones recientes, reflejando el de-
sarrollo histórico de la teoría. Se ha puesto especial cuidado en citar trabajos fundamentales y en
destacar las conexiones entre diferentes enfoques. Como resultado de este trabajo, se produjo una se-
rie de tres artículos cientificos originales titulados Estimates for pseudo-differential operators on the
torus revisited. I, II, III, de los cuales el primero aparecerá en el Journal of Mathematical Analysis
and Applications y los otros dos se encuentran en evaluación en otras revistas, y dos notas cortas titu-
ladas Boundedness of pseudo-differential operators on the torus via kernel estimates y Boundedness
of toroidal pseudo-differential operators on Hardy spaces, que apareceran en Trends in Mathematics
de la editorial Springer, todos ellos en colaboración con el Dr. Duván Cardona. Invitamos al lector a
abordar este texto como una guía para explorar un área fascinante del análisis armónico moderno.
Las demostraciones seleccionados buscan no solo transmitir resultados, sino también desarrollar la
intuición matemática necesaria para futuras investigaciones en el campo.

De manera muy especial, deseo agradecer al Dr. Duván Cardona, quien fue mi asesor para este
trabajo, por darme la oportunidad de trabajar con él. Me ha acompañado en mi desarrollo como
profesional y mis primeros pasos en la investigación, apoyandome con todos los detalles técnicos
necesarios para enriquecer mi trabajo. Más importante aún, me ha aconsejado y apoyado enrique-
ciendome también como persona. Además, me abrió las puerta para participar en la Comunidad
Internacional de Matemáticos de Latinoamerica (ICMAM Latin America), una hermosa comunidad
con quienes espero poder compartir y colaborar durante muchos años más.

Guatemala, Octubre de 2025
Manuel Alejandro Martínez Flores
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Resumen

El presente trabajo ofrece una revisión sistemática de los resultados de continuidad para opera-
dores pseudo-diferenciales en el toro Tn, con especial énfasis en las diferencias técnicas respecto al
caso euclidiano. Se examina la acotación de estos operadores en espacios de Lebesgue Lp, Sobolev
W s

p , espacios pesados Lp(w) y espacios de Hardy Hp, para símbolos pertenecientes a las clases de
Hörmander Sm

ρ,δ(Tn × Zn). La exposición se estructura en tres partes: preliminares sobre análisis
de Fourier y espacios funcionales, fundamentos del cálculo pseudo-diferencial toroidal usando ope-
radores de diferencia discreta, y demostraciones detalladas de teoremas de continuidad mediante
interpolación compleja, descomposiciones atómicas, estimaciones de kernel y técnicas de análisis
armónico. Este trabajo busca suplir la escasez de literatura en español sobre el tema, proporcio-
nando una referencia rigurosa y accesible para la comunidad matemática hispanohablante. Como
resultado de este trabajo, se produjo una serie de tres artículos cientificos originales: Estimates for
pseudo-differential operators on the torus revisited. I, II, III, de los cuales el primero aparecerá en
el Journal of Mathematical Analysis and Applications y los otros dos se encuentran en evaluación
en otras revistas, y dos notas cortas: Boundedness of pseudo-differential operators on the torus via
kernel estimates y Boundedness of toroidal pseudo-differential operators on Hardy spaces, que apa-
receran en Trends in Mathematics de la editorial Springer, todos ellos en colaboración con Duván
Cardona.

Palabras clave: Operadores pseudo-diferenciales, toro, análisis de Fourier, análisis armónico

This work provides a systematic review of continuity results for pseudo-differential operators
on the torus Tn, with special emphasis on the technical differences compared to the Euclidean
case. We examine the boundedness of these operators on Lebesgue spaces Lp, Sobolev spaces W s

p ,
weighted spaces Lp(w) and Hardy spaces Hp, for symbols belonging to Hörmander classes Sm

ρ,δ(Tn×
Zn). The exposition is structured in three parts: preliminaries on Fourier analysis and function
spaces, foundations of toroidal pseudo-differential calculus using discrete difference operators, and
detailed proofs of continuity theorems through complex interpolation, atomic decompositions, kernel
estimates, and harmonic analysis techniques. This work aims to address the scarcity of literature
in Spanish on the topic, providing a rigorous and accessible reference for the Spanish-speaking
mathematical community. As a result of this research, a series of three original scientific articles
were produced: Estimates for pseudo-differential operators on the torus revisited. I, II, III, of which
the first will appear in the Journal of Mathematical Analysis and Applications and the other two are
under evaluation in other journals, and two short notes: Boundedness of pseudo-differential operators
on the torus via kernel estimates and Boundedness of toroidal pseudo-differential operators on Hardy
spaces, which will appear in Trends in Mathematics by Springer, all of which in collaboration with
Duván Cardona.

Keywords: Pseudo-differential operators, torus, Fourier analysis, harmonic analysis
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CAPÍTULO 1

Introducción

El estudio de los operadores pseudo-diferenciales constituye una de las piedras angulares del
análisis moderno, con aplicaciones profundas en la teoría de ecuaciones diferenciales parciales, el
análisis armónico y la teoría espectral. Estos operadores generalizan tanto a los operadores diferen-
ciales como a los multiplicadores de Fourier, permitiendo un tratamiento unificado de problemas
que involucran no solo la regularidad de soluciones, sino también la acotación en diversos espacios
funcionales. En el caso euclidiano, la teoría está bien establecida gracias a los trabajos fundacionales
de Calderón, Zygmund, Hörmander y Fefferman, entre otros. Por ejemplo, Calderón y Vaillancourt
demostraron que los operadores con símbolos en la clase S0

ρ,ρ(Rn × Rn) son acotados en L2(Rn)
para 0 ≤ ρ < 1, mientras que Fefferman estableció cotas Lp óptimas para símbolos en Sm

ρ,δ cuando
m ≤ −n(1−ρ)|1/p−1/2| y 0 ≤ δ < ρ ≤ 1. Esto fue extendido al rango completo incluso cuando δ ≥ ρ
por Álvarez y Hounie. Estos resultados, junto con el desarrollo de herramientas como los espacios
de Hardy H1 y de funciones de oscilación media acotada BMO, han permitido un análisis profundo
de la continuidad de estos operadores mediante técnicas de interpolación compleja y estimaciones
de kernels. Asimismo, Álvarez y Milman utilizaron herramientas de estimación de kernel para de-
mostrar continuidad de operadores pseudo-diferenciales euclideanos en espacios de Hardy Hp, con
p ≤ 1. Además, técnicas modernas como el uso del operador maximal sharp M# introducido por
Fefferman y Stein, y la teoría de pesos de Muckenhoupt, han permitido extender estos resultados a
espacios de Lebesgue pesados Lp(w), como demostraron Park y Tomita.

Sin embargo, el estudio de estos operadores en variedades compactas, como el toro Tn := Rn/Zn,
presenta desafíos particulares debido a la estructura discreta de su espacio de frecuencias y a la
necesidad de desarrollar herramientas adaptadas a este contexto. En el toro, el cálculo pseudo-
diferencial puede abordarse de dos maneras: mediante una formulación local, tratando al toro como
una variedad y utilizando particiones de la unidad, o mediante una definición global, aprovechando
la estructura de grupo subyacente. Este trabajo se centra en este último enfoque, siguiendo el marco
desarrollado por Ruzhansky, Turunen y Vainikko, que permite definir operadores pseudo-diferenciales
toroidales a través de series de Fourier discretas. Esta perspectiva no solo es natural para el toro,
sino que también facilita el estudio de propiedades de acotación en espacios de Lebesgue Lp(Tn) y
de Sobolev W s

p (Tn), entre otros.
Uno de los problemas centrales en la teoría es determinar bajo qué condiciones un operador

pseudo-diferencial Ta, definido por un símbolo a(x, ξ) en una clase de Hörmander Sm
ρ,δ(Tn × Zn),

se extiende a un operador acotado entre espacios de funciones. Resultados clásicos, como los de
Calderón-Vaillancourt para L2(Rn) o los de Fefferman para Lp(Rn), han establecido cotas que de-
penden críticamente de los parámetros m, ρ, δ del símbolo. En el caso toroidal, aunque muchos de
estos resultados tienen análogos, las demostraciones requieren ajustes sustanciales debido a la natu-
raleza discreta del espacio de frecuencias Zn, a la falta de invarianza bajo cambios de coordenadas

1



CAPÍTULO 1. INTRODUCCIÓN 2

cuando ρ > 1 − δ y al hecho que las clases Hp y BMO no son estables bajo la multiplicación de
funciones test en el toro, lo que imposibilita tratar este espacio simplemente como una variedad me-
diante particiones de la unidad. Esta limitación justifica el estudio independiente del caso toroidal
y la necesidad de desarrollar herramientas específicas para este contexto, lo que refuerza la relevan-
cia de un tratamiento global mediante la transformada de Fourier discreta. Por ejemplo, Delgado
extendió el resultado de Fefferman al toro, probando acotación en Lp para p ≥ 2, mientras que con
Cardona se extendio al toro en el rango completo 1 < p < ∞, incluso en condiciones más generales
donde δ > ρ. Además, con Cardona se extendieron los resultados de continuidad en Hp y Lp(w)
para operadores pseudo-diferenciales toroidales

Este trabajo tiene como objetivo revisar y exponer de manera sistemática los resultados de
continuidad de operadores pseudo-diferenciales en el toro, haciendo especial hincapié en las técnicas
de demostración y en las diferencias con el caso euclidiano. Se abordarán tanto resultados clásicos
como contribuciones recientes, y se explorarán las particularidades del cálculo toroidal. La exposición
se estructura en tres capítulos principales. Inicialmente, se presentan los preliminares necesarios
sobre espacios de funciones, transformadas de Fourier y distribuciones en Rn y Tn. Además, se
incluyen resultados clásicos de análisis armónico, como el hecho que el espacio BMO es el dual del
espacio de Hardy H1 y técnicas de interpolación compleja que permiten extender propiedades de
continuidad a espacios Lp con 1 < p <∞. Luego, se introduce la definición y propiedades básicas de
los operadores pseudo-diferenciales en ambos contextos, destacando las particularidades del cálculo
toroidal. Finalmente, se dedican dos capítulos a demostrar los principales resultados de continuidad
en espacios de Lebesgue, de Sobolev, y de Hardy, utilizando técnicas que incluyen interpolación,
descomposiciones atómicas y estimaciones de núcleos integrales.

Con este trabajo, se espera proporcionar una referencia accesible y rigurosa que contribuya a
la divulgación de estos temas en español y fomente futuras investigaciones en el área. La escasez
de literatura en español sobre operadores pseudo-diferenciales representa una barrera significativa
para estudiantes e investigadores hispanohablantes, limitando su acceso a herramientas avanzadas y
reduciendo las oportunidades de formación especializada. Esta exposición busca reducir esta brecha,
permitiendo el acceso a conceptos avanzados y contribuyendo a fortalecer la comunidad matemática
en español.



CAPÍTULO 2

Objetivos

2.1. Objetivo General
Revisar y exponer los conceptos fundamentales en el estudio de operadores pseudo-diferenciales,

detallando teoremas y demostraciones importantes para su entendimiento e investigación.

2.2. Objetivos Específicos
Definir y explicar los conceptos clave para el estudio de operadores pseudo-diferenciales

Desarrollar con rigor matemático las bases teóricas de los operadores pseudo-diferenciales

Introducir de forma accesible al estado del arte en la investigación de operadores pseudo-
diferenciales

3



CAPÍTULO 3

Justificación

El estudio de los operadores pseudo-diferenciales es esencial en el análisis moderno, con aplica-
ciones clave en ecuaciones diferenciales parciales (EDP), análisis armónico y teoría espectral. Sin
embargo, la falta de recursos en español sobre el tema representa una barrera significativa para
estudiantes e investigadores hispanohablantes, limitando su acceso a herramientas avanzadas y re-
duciendo las oportunidades de formación especializada. Esta carencia no solo dificulta el aprendizaje
autónomo, sino que también desincentiva la investigación en áreas teóricas y aplicadas donde estos
operadores son fundamentales, como el análisis de regularidad de soluciones de EDP’s. Este tra-
bajo busca reducir esta brecha, proporcionando una exposición clara y rigurosa de los operadores
pseudo-diferenciales en el toro y sus propiedades de continuidad. Permitiendo así, el acceso a con-
ceptos avanzados y contribuyendo a fortalecer la comunidad matemática en español, promoviendo
la investigación y la innovación en un campo con amplias proyecciones teóricas y aplicadas.

4



CAPÍTULO 4

Antecedentes

En el caso euclidiano, Calderón y Vaillancourt demostraron que los operadores pseudo-diferenciales
con símbolos en la clase S0

ρ,ρ(Rn × Rn) son acotados en L2(Rn) para algún 0 ≤ ρ < 1, véase [5, 6].
Este resultado no puede extenderse cuando ρ = 1, es decir, existen símbolos en S0

1,1(Rn × Rn)
cuyos operadores pseudo-diferenciales asociados no son acotados en L2; para un argumento clási-
co de este hecho debido a Hörmander, consúltese [18]. Además, Fefferman [20] probó la acotación
L∞(Rn)-BMO(Rn) para operadores pseudo-diferenciales con símbolos en la clase Sm

ρ,δ(Rn×Rn), con
m = −n(1−ρ)/2 donde 0 ≤ δ < ρ ≤ 1. Fefferman también obtuvo la acotación en Lp(Rn) para estas
clases cuandom ≤ −n(1−ρ)|1/p−1/2| y 1 < p <∞. En vista de ejemplos clásicos debidos a Wainger
y Hirschman, el resultado de Fefferman es óptimo para multiplicadores de Fourier. Posteriormente,
Álvarez y Hounie demostraron continuidad Lp-Lq incluso cuando δ > ρ, vea [2]. Cabe destacar que
el desarrollo histórico del problema de la acotación en Lp de operadores pseudo-diferenciales ha sido
discutido en Rn, por ejemplo, en [28, 35].

En Rn, la teoría de los espacios de Hardy en varias variables fue tratada exhaustivamente por
Fefferman y Stein en [21]. Estos autores demostraron que es posible aplicar el método de interpolación
compleja entre H1 y L2, y entre L2 y BMO, para obtener propiedades de continuidad en los espacios
de Lebesgue Lp. Además, Fefferman descubrió de manera significativa que el dual del espacio de
Hardy H1 es el espacio de funciones con oscilación media acotada BMO, véase [19]. Estos hechos
permitieron a Fefferman probar la acotación en Lp, 1 < p < ∞, de operadores pseudo-diferenciales
con símbolos en la clase de Hörmander Sm

ρ,δ(Rn ×Rn), donde 0 ≤ δ < ρ ≤ 1 y m ≤ −n(1− ρ)|1/p−
1/2|. Además, Álvarez y Hounie [2] demostraron continuidad hp-Lp y Hp, con p ≤ 1, para operadores
pseudo-diferenciales euclideanos utilizando propiedades del kernel que explotan resultados obtenidos
en el caso vectorial estudiado por Álvarez y Milman [3].

Por otra parte, Fefferman y Stein introdujeron la función maximal aguda M# en [21], la cual sirve
para caracterizar la norma del espacio de funciones con oscilación media acotada BMO(Rn). Además,
probaron que satisface una cota superior con respecto a la norma Lp de funciones integrables, es
decir, se cumple que ∥f∥Lp ≲ ∥M#f∥Lp . Aquí, y en lo que sigue, A ≲ B significa que existe una
constante C > 0 tal que A ≤ CB. Además, se ha demostrado que si T es un operador de Calderón-
Zygmund, entonces se tiene la desigualdad puntual M#(Tf)(x) ≲ Mrf(x), donde Mr es la versión
Lr de la función maximal de Hardy-Littlewood. Combinando estas dos estimaciones se obtienen
cotas de continuidad de T de Lp en sí mismo. Es decir, que

∥Tf∥Lp ≲ ∥M#(Tf)∥Lp ≲ ∥Mrf∥Lp ≲ ∥f∥Lp . (4.0.1)

Esta técnica ha sido ampliamente empleada en una variedad de trabajos de análisis armónico, véase
[21]. Por otro lado, Muckenhoupt probó que los pesos w en la clase Ap satisfacen la siguiente esti-
mación ∥Mf∥Lp(w) ≲ ∥f∥Lp(w), para 1 < p < ∞, véase [27]. Combinando estos dos hechos, Park

5



CAPÍTULO 4. ANTECEDENTES 6

y Tomita [29] probaron la continuidad para espacios de Lebesgue pesados Lp(w) para operadores
pseudo-diferenciales euclidianos con símbolos en las clases de Hörmander Sm

ρ,δ(Rn × Rn).
Los operadores pseudo-diferenciales con símbolos en las clases de Hörmander pueden definirse en

variedades C∞ mediante cartas locales. Por ello, se considera el toro Tn := Rn/Zn como un grupo
aditivo cociente y una n-variedad, con el atlas preferido de sistemas de coordenadas dado por la
aplicación de restricción x 7→ x + Zn en conjuntos abiertos Ω ⊂ Rn, véase McLane [25]. Se nota
que en [1], Agranovich proporciona una definición global de operadores pseudo-diferenciales en el
círculo S1 = T1, en lugar de la formulación local que trata al círculo como una variedad. Mediante
la transformada de Fourier, esta definición se extendió al toro Tn. Además, se ha demostrado que
las clases (ρ, δ) de Agranovich y Hörmander son equivalentes, gracias al teorema de equivalencia de
McLane [25]. Asimismo, cotas Lp en el círculo que pueden extenderse al toro se encuentran en [36],
en el marco clásico de la teoría de Calderón-Zygmund. En este trabajo, se consideran operadores
pseudo-diferenciales toroidales en el contexto del cálculo pseudo-diferencial en el toro desarrollado
por Ruzhansky, Turunen y Vainniko [30, 31]. En este marco, el análogo toroidal del resultado de
Fefferman fue probado por Delgado en [16] para el toro, aunque aún se requiere que δ < ρ. Este
resultado fue extendido posteriormente a grupos de Lie compactos por Delgado y Ruzhansky [17] y
a variedades con geometría acotada por Gómez Cobos y Ruzhansky [22]. También se ha extendido
para clases de Hörmander subelípticas en grupos de Lie compactos en [13]. El resultado de Álvarez
y Hounie de continuidad Lp fue extendido al caso toroidal con Cardona en [12], y para continuidad
Hp-Lp y Hp con Cardona en [10]. El resultado de Park y Tomita de continuidad Lp(w) fue demos-
trado para operadores pseudo-diferenciales toroidales con Cardona en [11]. Para otros trabajos sobre
acotación Lp de operadores pseudo-diferenciales, se remite al lector a [8, 26, 32].



CAPÍTULO 5

Preliminares

En este capítulo se revisarán aspectos básicos del análisis armónico en Rn y Tn. Se recuerda que
Rn es un grupo aditivo respecto a la suma usual de vectores con subgrupo aditivo Zn. Entonces, se
define al toro n-dimensional como el grupo cociente Tn := Rn/Zn = (R/Z)n. Además, el toro puede
ser identificado con el conjunto [0, 1)n y se le puede considerar con la topología cociente. A lo largo
de este trabajo, se fijará la medida de Lebesgue en Rn. Para cualquier punto x := (x1, . . . , xn) ∈ Rn,
se denotará la norma euclideana como

|x| :=
√
x21 + · · ·+ x2n.

Sin embargo, podría ser problemático considerar potencias negativas de la norma euclideana, debido
a que se desvanece en cero. Por lo que se considerará una función que se comporta asintóticamente
similar, pero no presenta el mismo problema

⟨x⟩ :=
√
1 + |x|2.

Si se tiene que existe una constante C > 0 tal que A ≤ CB, se dice que A ≲ B. Si además, C
depende de algún parámetro α, se denota A ≲α B.

5.1. Espacios de Lebesgue en Rn y Tn

Sea Ω un subconjunto medible de Rn. Por simplicidad, se supondrá que Ω es abierto o cerrado.

Definición 5.1.1 (Espacios de Bochner-Lebesgue). Sea 1 ≤ p <∞, y X un espacio de Banach. Se
dice que una función (fuertemente) medible f : Ω ⊂ Rn → X se encuentra en Lp(Ω;X) si su norma

∥f∥Lp(Ω;X) :=

(∫
Ω

∥f(x)∥pX dx

)1/p

es finita. Para el caso p = ∞, se dice que f ∈ L∞(Ω;X) si es esencialmente acotada. Es decir, si

∥f∥L∞(Ω;X) := ess sup
x∈Ω

∥f(x)∥X <∞,

donde ess supx∈Ω |f(x)| se define como el menor número real M tal que es mayor que ∥f(x)∥X casi
para todo x ∈ Ω, i.e. excepto fuera de un conjunto de medida cero.

7



CAPÍTULO 5. PRELIMINARES 8

Cabe destacar que en realidad los elementos de los espacios Lp(Ω;X) son clases de equivalencias
de funciones iguales casi en todo x ∈ Ω. Sin embargo, es un detalle técnico menor y se acostumbra a
tratarles como funciones. Particularmente, es de interés cuando X = C, entonces se denotará Lp(Ω).
Además, cuando Ω y X sean claros por el contexto, simplemente se denotará ∥·∥Lp(Ω;X) como ∥·∥Lp .
Ahora, se discutirán propiedades importantes de los espacios de Lebesgue.

Proposición 5.1.2 (Desigualdad de Young). Sean 1 < p, q < ∞, tales que 1
p + 1

q = 1. Entonces
para todos a, b > 0, se tiene que

ab ≤ ap

p
+
bq

q
.

Como consecuencia, para g ∈ Lq(Ω;X) y f ∈ Lp(Ω;B(X,Y )), donde B(X,Y ) es el espacio de
operadores acotados X → Y , se tiene que fg ∈ L1(Ω;Y ) y

∥fg∥L1 ≤ 1

p
∥f∥pLp +

1

q
∥g∥qLq .

Demostración. Esto es consecuencia del hecho que x 7→ ex es una función convexa. Entonces

ab = eln a+ln b = e
1
p ln ap+ 1

q ln bq ≤ 1

p
eln ap

+
1

q
eln bq =

ap

p
+
bq

q
.

Completando así la prueba.

Particularmente cuando p = 2 = q, se tiene la conocida como desigualdad de Cauchy.

Proposición 5.1.3 (Desigualdad de Hölder). Sean 1 ≤ p, q ≤ ∞, tales que 1
p + 1

q = 1. Entonces,
para g ∈ Lq(Ω;X) y f ∈ Lp(Ω;B(X,Y )), se tiene que fg ∈ L1(Ω;Y ) y

∥fg∥L1 ≤ ∥f∥Lp∥g∥Lq .

Demostración. Para el caso p = 1, o p = ∞, el resultado es trivial. Así que se considerará el caso 1 <
p <∞, que es una aplicación de la proposición anterior. Primero, se supone que ∥f∥Lp = ∥g∥Lq = 1.
Entonces, se tiene que

∥fg∥L1 ≤ 1

p
∥f∥Lp +

1

q
∥g∥Lq = 1.

Ahora, se nota que si ∥f∥Lp o ∥g∥Lq se anulan, entonces se trivializa la desigualdad. Por lo que se
puede considerar el caso más general en el que ninguna de las normas se anula de la siguiente manera∥∥∥∥ f

∥f∥Lp

g

∥g∥Lq

∥∥∥∥
L1

≤ 1.

El resultado sigue de la linealidad de la norma L1.

En el caso p = 2 = q se obtiene la desigualdad de Cauchy-Schwarz.

Proposición 5.1.4 (Desigualdad de Minkowski). Dado 1 ≤ p ≤ ∞, sean f, g ∈ Lp(Ω;X). Entonces
se tiene que

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp .

Particularmente, ∥ · ∥Lp satisface la desigualdad triangular y Lp(Ω;X) es un espacio normado.

Demostración. Para p = 1, o p = ∞ el resultado se obtiene gracias a la desigualdad triangular de la
norma en X. Ahora, para 1 < p <∞ se tiene que

∥f + g∥pLp ≤
∫
Ω

∥f + g∥p−1
X (∥f∥X + ∥g∥X) dx

=

∫
Ω

∥f + g∥p−1
X ∥f∥X dx+

∫
Ω

∥f + g∥p−1
X ∥g∥X dx

≤
(∫

Ω

∥f + g∥(p−1) p
p−1

X dx

) p−1
p

[(∫
Ω

∥f∥pX dx

)1/p

+

(∫
Ω

∥g∥pX dx

)1/p
]

= ∥f + g∥p−1
Lp (∥f∥Lp + ∥g∥Lp).



CAPÍTULO 5. PRELIMINARES 9

Aquí, la primera desigualdad es la desigualdad triangular de la norma de X, y la segunda es la
desigualdad de Hölder, por lo que se concluye lo deseado.

Teorema 5.1.5 (Desigualdad de Jensen). Sea µ una medida unitaria en Ω, y sea φ : I ⊂ R → R
una función convexa, donde I es un intervalo. Entonces para funciones integrables f : Ω → I, se
tiene que

φ

(∫
Ω

f dµ

)
≤
∫
Ω

φ ◦ f dµ.

Demostración. Note que la convexidad equivale a para cualquier y0 ∈ Σ existe λ tal que φ(y) ≥
φ(y0) + λ(y − y0). Entonces, tome en particular

y0 :=

∫
Ω

f dµ.

Se tiene que y0 ∈ I dado que la medida µ es unitaria. Por lo que∫
Ω

φ ◦ f dµ ≥ φ(y0) + λ

∫
Ω

(f − y0) dµ = φ(y0).

Lo que completa la prueba.

Ahora se introducen dos resultados importantes y de bastante utilidad. Sin embargo, sus demos-
traciones requieren de herramientas de teoría de la medida o del análisis complejo que se encuentran
fuera del alcance de este trabajo. Por lo que simplemente se enuncian y se recomienda al lector
investigar los detalles.

Proposición 5.1.6 (Monotonía de la norma Lp). Sea f : Ω1×Ω2 ⊂ Rn×Rn → X y sea 1 ≤ p ≤ ∞.
Se supone que f(·, y) ∈ Lp(Ω1;X) para casi todo y, y que y 7→ ∥f(·, y)∥Lp se encuentra en L1(Ω2;X).
Entonces f(x, ·) ∈ L1(Ω2;X) para casi todo x, la función x 7→

∫
Ω2
f(x, y) dy se encuentra en Lp(Ω1),

y ∥∥∥∥∫
Ω2

f(·, y) dy
∥∥∥∥
Lp(Ω1)

≤
∫
Ω2

∥f(·, y)∥Lp(Ω1) dy.

A continuación se presenta un resultado clásico de la interpolación de operadores y espacios
de funciones. Para una discusión más profunda de estas técnicas, se recomienda revisar Bergh y
Löfstrom [4].

Teorema 5.1.7 (Interpolación de Riesz-Thorin). Sea T : Lp0(Ω;X) + Lp1(Ω;X) → Lq0(Ω;Y ) +
Lq1(Ω;Y ) un operador lineal tal que

∥Tf∥Lq0 ≤M0∥f∥Lp0 , ∥Tf∥Lq1 ≤M1∥f∥Lp1 .

Para cualquier 0 < θ < 1, se definen

1

pθ
=

1− θ

p0
+

θ

p1
,

1

qθ
=

1− θ

q0
+

θ

q1
.

Entonces, T extiende a un operador continuo de Lpθ (Ω) en Lqθ (Ω). Además,

∥Tf∥Lqθ ≤M1−θ
0 Mθ

1 ∥f∥Lpθ .

Se continúa con el programa de definiciones y propiedades en los espacios de Lebesgue.

Definición 5.1.8 (Convoluciones). Para funciones g ∈ L1(Ω;X), y f ∈ L1(Ω;B(X,Y )), se define
su convolución como

(f ∗ g)(x) :=
∫
Ω

f(x− y)g(y) dy.

Se puede notar que el cambio de variable y 7→ x−u implica la conmutatividad cuando Ω es invariante
bajo traslaciones (Rn o Tn por ejemplo), es decir f ∗ g = g ∗ f .
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Nota 5.1.9. En la definición anterior existe la pregunta sobre la convergencia de la integral. Para
definir la convolución de forma rigurosa, se podría definir primero para funciones que cumplan
condiciones de regularidad más fuertes, como las del espacio de Schwartz que se definirá en la
siguiente sección, para luego definir el operador ∗ : L1 × L1 → L1 que estaría bien definido gracias
a la siguiente propiedad.

Proposición 5.1.10 (Desigualdad de Young para convoluciones). Sean 1 ≤ p, q, r ≤ ∞ tales que
1
p + 1

q = 1 + 1
r , y sean g ∈ Lq(Ω;X), y f ∈ Lp(Ω;B(X,Y )). Entonces se tiene que

∥f ∗ g∥Lr ≤ ∥f∥Lp∥g∥Lq .

Demostración. Se nota que gracias al Teorema 5.1.7 es suficiente demostrar

∥f ∗ g∥Lp ≤ ∥f∥Lp∥g∥L1 , ∥f ∗ g∥L∞ ≤ ∥f∥Lp∥g∥Lt , (5.1.1)

para 1
t +

1
p = 1. En efecto, bastaría con considerar el operador f ∗ ·, los parametros

p0 = 1, p1 = t, q0 = p, q1 = ∞.

y ∥f∥Lp como ambas constantes de estimación. Al aplicar la interpolación

1

r
=

1− θ

p
+

θ

∞
,

1

q
=

1− θ

1
+
θ

t
,

se obtiene la condición indicada para los parametros p, q, r. Ahora, se procede a demostrar el primer
estimativo de (5.1.1). Este se obtiene como resultado de la monotonia de la norma Lp, vea la
Proposición 5.1.6. En efecto,

∥f ∗ g∥Lp =

∥∥∥∥∫
Ω

f(· − y)g(y) dy

∥∥∥∥
Lp

≤
∫
Ω

∥f(· − y)∥Lp∥g(y)∥X dy

≤ ∥f∥Lp∥g∥L1 .

Por otra parte, el segundo estimativo es resultado de la desigualdad de Hölder

∥f ∗ g∥L∞ ≤
∫
Ω

∥f(x− y)∥B∥g(y)∥X dy

≤ ∥f∥Lp∥g∥Lt .

Concluyendo con el resultado deseado.

Las convoluciones son casos especiales de operadores con kernel valuado en operadores.

Definición 5.1.11 (Operador con kernel valuado en operadores). Decimos que un operador T :
C∞(Ω;X) → C∞(Ω;Y ) tiene un kernel valuado en operadores si se puede escribir como

Tf(x) =

∫
Ω

k(x, y)f(y) dy,

donde k : Ω × Ω → B(X,Y ), denominado el kernel, es tal que ∥k(x, ·)∥B(X,Y ) es integrable lejos de
x ∈ Ω.

Se continua con un resultado importante sobre convergencia en espacios Lp

Teorema 5.1.12 (Convergencia dominanda de Lebesgue). Sea (fk)
∞
k=1 una secuencia de funciones

medibles en Ω tales que convergen puntualmente a f para casi todo x ∈ Ω. Se supone que existe
g ∈ L1(Ω;X) tal que |fk| ≤ g para todo k. Entonces f es integrable y∫

Ω

f dx = ĺım
k→∞

∫
Ω

fk dx.
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Nota 5.1.13. Una implicación del resultado anterior es el hecho que los espacios Lp son completos, y
por consecuencia son espacios de Banach. Particularmente, si H es un espacio de Hilbert, entonces
el espacio L2(Ω,H) es un espacio de Hilbert con producto interno dado por

(f, g)L2 :=

∫
Ω

(f(x), g(x))H dx.

Teorema 5.1.14. Las funciones continuas son densas en el espacio Lp(Ω;X).

Demostración. Basta con demostrarlo para una función simple χE , donde E es un conjunto medible.
Por definición de medida de Lebesgue |E| = ı́nf{

∑
|Ik| : E ⊂

⋃
Ik}, donde los Ik son cubos abiertos.

Entonces, siembre existe un abierto U , tal que |U \E| < ε. Ahora, se toma una sucesión de funciones
suaves ϕn, tal que ϕn(0) = 1, que ϕn(t) = 0, para t > 1/n. Entonces, se define Φn(x) := ϕn(d(x, U)),
donde se toma la distancia al abierto U . Por lo que

∥Φn − χE∥Lp ≤ ∥χUn − χE∥Lp = ∥χUn\U − χU\E∥Lp ≤ ∥χUn\U∥Lp + ε1/p,

donde Un es el soporte de Φn, que se puede ver decrece a U . La prueba se completa por convergencia
dominada.

Se presenta la versión local de los espacios de Lebesgue. Para ello se necesita el siguiente espacio
de funciones.

Definición 5.1.15 (Funciones suaves de soporte compacto). Se dice que φ : Ω ⊂ Rn → X es suave
si es de clase C∞, o infinitamente diferenciable. Se define su soporte como

suppφ = {x ∈ Ω : φ(x) ̸= 0}.

Si suppφ es compacto, se dice que f ∈ C∞
0 (Ω;X).

Definición 5.1.16 (Localización de espacios de Lebesgue). Se dice que una función medible f :
Ω ⊂ Rn → X es localmente integrable o pertenece a Lp

loc(Ω;X), con 1 ≤ p ≤ ∞ si

∥fφ∥Lp <∞,

para todo φ ∈ C∞
0 (Ω).

Ahora, se introducen los espacios de Lebesgue pesados.

Definición 5.1.17 (Espacios de Lebesgue pesados). Sea w : Ω ⊂ Rn → C una función localmente
integrable no-negativa. Entonces, se puede definir la medida

w(E) =

∫
E

w(x) dx.

Por lo que se dice que una función (fuertemente) medible f : Ω → X, pertenece al espacio de
Lebesgue pesado Lp(Ω;X;w) cuando

∥f∥Lp(w) :=

(∫
Ω

∥f(x)∥pX dw(x)

)1/p

<∞,

para 1 ≤ p <∞. Cuando p = ∞, cuando es acotada excepto en un conjunto de w-medida cero.

Proposición 5.1.18 (Definición alternativa de la norma Lp). Para f ∈ Lp(Ω;X;w), se tiene que
para 0 < p <∞,

p

∫ ∞

0

tp−1af (t) dt =

∫
Ω

∥f(x)∥pX dw(x).

con af (t) = w{x ∈ Ω : ∥f(x)∥X > t}.
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Demostración. Basta con notar que para cualquier función diferenciable ϕ(t) con ϕ(0) = 0, se tiene
que ∫

Ω

ϕ(∥f(x)∥X) dw(x) =

∫
Ω

∫ ∥f(x)∥X

0

ϕ′(t) dtdw(x)

=

∫ ∞

0

ϕ′(t)

∫
∥f(x)∥X>t

dw(x) dt

=

∫ ∞

0

ϕ′(t)w{x ∈ Ω : ∥f(x)∥X > t}dt.

Ahora, el resultado se obtiene cuando ϕ(t) = tp.

A continuación, se presenta un resultado de interpolación bastante útil.

Definición 5.1.19. Sea T un operador desde Lp(Ω;X;w) al espacio de funciones medibles desde Σ
hacia Y . Entonces, se dice que T es de tipo (p, q) débil respecto a los pesos (u,w), con q <∞, si se
tiene que

u{x ∈ Σ : ∥Tf(x)∥Y > λ} ≲

(∥f∥Lp(w)

λ

)q

.

Además, se dice que es de tipo débil (p, q = ∞) o tipo fuerte (p, q), si es acotado desde Lp(Ω;X;w)
hacia Lq(Σ;Y ;u).

Teorema 5.1.20. Sea {Tt} una familia de operadores en Lp(Ω;X;w), y se define su operador
maximal asociado

T∗f(x) = sup
t

∥Ttf(x)∥X .

Si T∗ es de tipo (p, q) débil respecto a (w,w), entonces se tiene que los conjuntos{
f ∈ Lp(w) : ĺım

t→t0
Ttf(x) = f(x) casi en todas partes

}
,{

f ∈ Lp(w) : ĺım
t→t0

Ttf(x) = 0 casi en todas partes
}
,

son cerrados.

Demostración. Sea (fn) una suseción de funciones que converge a f ∈ Lp(w). Entonces, se tiene que

w{ĺım sup
t→t0

∥Ttf(x)− f(x)∥X > λ} ≤ w{ĺım sup
t→t0

∥Tt(f − fn)(x)− (f − fn)(x)∥X > λ}

≤ w{T∗(f − fn)(x) > λ/2}+ w{∥(f − fn)(x)∥X > λ/2}

≤
(
C2

λ
∥f − fn∥Lp(w)

)q

+

(
2

λ
∥f − fn∥Lp(w)

)q

→ 0,

cuando n → ∞. Lo que completa la prueba del primer conjunto, para el segundo, se utiliza un
argumento similar con {ĺım supt→t0 ∥Ttf(x)∥X > λ}.

Teorema 5.1.21 (Interpolación de Marcinkiewicz). Sean 1 ≤ p0 < p1 ≤ ∞, y 1 ≤ q0 < q1 ≤
∞, tales que pj < qj. Y sea T un operador sublineal desde Lp0(Ω;X;w) + Lp1(Ω;X;w) hacia las
funciones medibles de Σ en Y , es decir

∥T (f + g)(x)∥Y ≤ ∥Tf(x)∥Y + ∥Tg(x)∥Y ,
∥T (λf)(x)∥Y = |λ|∥Tf(x)∥Y .

Además, suponga que T es de tipo débil (p0, q0) y (p1, q1), respecto a las medidas (u,w). Entonces,
se tiene que T es de tipo fuerte (p, q) respecto a (u,w) para p0 < p < p1, q0 < q < q1, y p ≤ q, con
la forma

1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+

θ

q1
.
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Demostración. Sea f ∈ Lp, y sea χ la función indicadora para puntos que satisfacen ∥f∥X > σλγ ,
donde σ es una constante que se escoge luego, y

γ =
(q1 − q0)p0p1
(p1 − p2)q0q1

.

Entonces, se descompone
f = fχ+ f(1− χ) =: f0 + f1,

donde se puede ver que fj ∈ Lpj . Además,

∥Tf(x)∥Y ≤ ∥Tf0(x)∥Y + ∥Tf1(x)∥Y ,

aTf (λ) ≤ aTf0(λ/2) + aTf1(λ/2).

(Caso: p1 <∞) Entonces se tienen las desigualdades

aTfj (λ/2) ≤
(
2Aj

λ
∥f∥Lpj (w)

)qj

.

Además, se define Entonces, se tiene que

∥Tf∥qLq(u) = q

∫ ∞

0

λq−1aTf (λ) dλ

≤
∑
j

q

∫ ∞

0

λq−1aTfj (λ/2) dλ

≤
∑
j

q

∫ ∞

0

λq−1−qj (2Aj)
qj

(∫
Ω

∥fj(x)∥
pj

X du(x)

)qj/pj

dλ

≤
∑
j

q

∫ ∞

0

λq−1−qj (2Aj)
qj

∫
Ω

∥fj(x)∥
qj
X du(x) dλ

≤ q

∫ ∞

0

λq−1−q0(2A0)
q0

∫
∥f∥X>σλγ

∥f(x)∥q0X du(x) dλ

+ q

∫ ∞

0

λq−1−q1(2A1)
q1

∫
∥f∥X≤σλγ

∥f(x)∥q1X du(x) dλ

= q(2A0)
q0

∫
Ω

∥f(x)∥q0X
∫ (|f |/σ)1/γ

0

λq−1−q0 dλ du(x)

+ q(2A1)
q1

∫
Ω

∥f(x)∥q1X
∫ ∞

(∥f∥X/σ)1/γ
λq−1−q1 dλ du(x)

=
q(2A0)

q0σq0−p

q − q0

∫
Ω

∥f(x)∥pX du(x) +
q(2A1)

q1σq1−p

q1 − q

∫
Ω

∥f(x)∥pX du(x)

=

(
q(2A0)

q0σq0−p

q − q0
+
q(2A1)

q1σq1−p

q1 − q

)
∥f∥pLp(w).

Entonces, si se utiliza ∥f∥−1
Lp(w)f en lugar de f , se obtiene por homogenidad de T

∥f∥−q
Lp(w)∥Tf∥

q
Lq(u) ≤ Cσ.

Ahora, se escoge σ = 1
2A

q0
q1−q0
0 A

q1
q0−q1
1 , para obtener una cota que dependa solo de A0, A0 y p, q.

Particularmente, cuando pj = qj

∥Tf∥Lp(u) ≤ 2p1/p
(

1

p− p0
+

1

p1 − p

)1/p

A1−θ
0 Aθ

1∥f∥Lp(w), con
1

p
=

1− θ

p0
+

θ

p1
. (5.1.2)
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(Caso q1 = ∞) Es similar al caso anterior, pero solo con una desigualdad débil. En efecto

∥Tf∥qLq(u) ≤
q(2A0)

q0σq0−p

q − q0
∥f∥pLp(w),

particularmente, si pj = qj , se escoge σ = (2A1)
−1, donde ∥Tg∥L∞ ≤ A1∥g∥L∞ , se obtiene (5.1.2).

Lo que completa la prueba.

Nota 5.1.22. Note que la definición de continuidad débil y el resultado de interpolación de Mar-
cinkiewicz vale para cualquier espacio de medida. No necesariamente para la medida de Lebesgue
euclideana.

Ahora, se presenta un resultado de descomposición que fue demostrado por Calderón y Zigmund
[7].

Definición 5.1.23 (Cubos diádicos). En Rn, se define a Qk como la colección de cubos abiertos por
la derecha, cuyos vértices son puntos adyacentes del retículo (2−kZ)n. Entonces, se les llama cubos
diádicos a los elementos de

⋃
k Qk.

Nota 5.1.24. Esta definición también puede aplicar para Ω ⊂ Rn, al tomar la colección Q′
k :=

{Q ∩ Ω : Q ∈ Qk}. Además, se tiene que estos cubos cumplen con:

1. Dado x ∈ Ω, existe un único Q ∈ Qk, tal que x ∈ Q, para cada k.

2. Para cualesquiera dos cubos diádicos, se tiene que son disjuntos o uno esta contenido en el
otro.

3. Cada cubo en Qk, está contenido en exactamente un cubo de Qj , para j < k. Además, contiene
exactamente 2n cubos en Qk+1.

Definición 5.1.25 (Operador maximal diádico). Para f ∈ L1
loc(Ω;X), se define el operador maximal

diádico como

Mdf(x) := sup
k

∥Ekf(x)∥X , con Ekf(x) :=
∑

Q∈Qk

χQ(x)

|Q|

∫
Q

f(y) dy.

Teorema 5.1.26. El operador maximal diádico es de tipo débil (1, 1). Además, se tiene ĺımk Ekf(x) =
f(x), para f ∈ L1

loc(Ω, X).

Demostración. Sin pérdida de generalidad, suponga que f es no-negativo. Entonces se descompone

{x ∈ Ω :Mdf(x) > λ} =
⋃
k

Ωk,

donde x ∈ Ωk, si k = mı́n{j : Ejf(x) > λ}. Este k existe porque Ekf(x) → 0 cuando k → −∞,
para f ∈ L1. Estos Ωk son disjuntos y por construcción pueden escribirse como union de cubos en
Qk. Entonces, se tiene que

|{x ∈ Ω :Mdf(x) > λ}| =
∑
k

|Ωk|

≤
∑
k

1

λ

∫
Ωk

Ekf(x) dx

=
1

λ

∑
k

∑
Q∈Qk
Q⊂Ωk

∫
Q

χQ(x)

|Q|

∫
Q

f(y) dy dx

=
1

λ

∑
k

∑
Q∈Qk
Q⊂Ωk

∫
Q

f(y) dy

=
1

λ

∑
k

∫
Ωk

f(y) dy ≤ 1

λ
∥f∥L1 .
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Ahora, para la segunda parte, es claro que es válido para una función continua. Entonces, en vista
del Teorema 5.1.20, se puede verificar para cualquier f ∈ L1

loc, por un argumento de densidad.

Teorema 5.1.27 (Calderón-Zygmund). Para cualquier f integrable y no-negativa, existe una se-
cuencia {Qj} de cubos diádicos disjuntos, tales que

1. f(x) ≥ λ casi en todas partes para x /∈
⋃

j Qj,

2.
∣∣∣⋃j Qj

∣∣∣ ≤ 1
λ∥f∥L1 ,

3. λ < 1
Qj

∫
Qj
f ≤ 2nλ.

Demostración. La prueba del segundo inciso se encuentra en la demostración anterior. El primer
inciso es consecuencia del hecho que si x /∈

⋃
j Qj , entonces Ekf(x) ≤ λ para todo k, y solo basta

con tomar el límite en vista del resultado anterior. Para el tercer inciso, se ve que por construcción
de los Qj , se tiene que el promedio de f sobre ellos es mayor que λ, y ningún cubo que lo contenga
también lo cumple. Ahora, sea Q̃j el cubo diádico más pequeño que contiene estrictamente a Qj .
Entonces, se tiene que

1

|Qj |

∫
Qj

f ≤ |Q̃j |
|Qj |

1

|Qj |

∫
Q̃j

f ≤ 2nλ.

Lo que concluye la prueba.

A continuación se define un operador maximal bastante importante. El operador maximal de
Hardy-Littlewood.

Definición 5.1.28 (Operador maximal de Hardy-Littlewood). Para f ∈ Lp
loc(Ω;X), se define al

operador p-maximal de Hardy-Littlewood como

Mpf(x) := sup
Q∋x

(
1

|Q|

∫
Q

∥f(y)∥pX dy

)1/p

,

donde Q son cubos con lados paralelos a los ejes. Cuando p = 1, se considera el operador de Hardy-
Littlewood y se denota Mf .

Ahora, se presenta un resultado que evidencia la utilidad de este operador maximal

Teorema 5.1.29. El operador maximal de Hardy-Littlewood es continuo desde Lp(Ω;X;Mw) hacia
Lp(Ω;C;w), para 1 < p ≤ ∞.

Demostración. Note que si Mw(x) = 0 para algún x, entonces se tiene que w(x) = 0 casi en todas
partes, lo que trivializa el resultado. Entonces, sea t > ∥f∥L∞(Mw), entonces∫

∥f∥X>t

Mw(x) dx = 0,

y como Mw(x) > 0, se tiene que |{∥f∥X > λ}| = 0. Esto implica que Mf(x) < λ casi en todas
partes. Llevando λ al límite se puede concluir que ∥Mf∥L∞(w) ≤ ∥f∥L∞(Mw). Entonces solo queda
demostrar la desigualdad débil de tipo (1, 1), para poder aplicar el Teorema de interpolación de
Marcinkiewicz. Para esto, se aplica la descomposición de Calderón-Zygmund al operador maximal
diádico

{x ∈ Ω :Mdf(x) > λ} =
⋃
j

Qj .

Para cada Qj , se toma 3Qj , un cubo concéntrico tal que ℓ(3Qj) = 3ℓ(Qj). Además, se fija x /∈
⋃

j 3Qj

y un cubo cualquiera Q que lo contenga. Se escoge k ∈ Z, tal que 2k−1 ≤ ℓ(Q) < 2k, entonces existen
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m ≤ 2n cubos diádicos en Qk que se intersectan con Q, que se denotan Rj . Note que ninguno está
contenido en los Qj , de lo contrario x ∈

⋃
j 3Qj . Entonces, se tiene que

1

|Q|

∫
Q

f dx =
1

|Q|

m∑
j=1

∫
Q∩Rj

f dx

≤
m∑
j=1

2kn

|Q|
1

|Rj |

∫
Rj

f dx

≤ 2nmλ ≤ 4nλ.

En conclusión, se tiene que
{x ∈ Ω : Mf(x) > 4nλ} ⊂

⋃
j

3Qj .

Por lo que, aprovechando la tercera propiedad de la descomposición,

w{Mf > λ} ≤
∑
j

∫
3Qj

dw(x)

≤
∑
j

4n

λ|Qj |

∫
Qj

∥f(y)∥X dy
3n|Qj |
|3Qj |

∫
3Qj

dw(x)

≤ 3n4n

λ

∑
j

∫
Qj

∥f(y)∥XMw(y) dy

≤ 3n4n

λ
∥f∥L1(Mw).

Lo que concluye la prueba

En vista de la continuidad débil (1, 1), y el hecho que vale para funciones continuas, se obtiene
que

Corolario 5.1.30 (Teorema de diferenciación de Lebesgue). Para f ∈ L1
loc(Ω;X), se tiene que

ĺım
r→0

1

|B(x, r)|

∫
B(x,r)

f(y) dy = f(x),

casi para todo x ∈ Ω. En particular, ∥f∥X ≤ Mf casi en todas partes, y

ĺım
r→0

1

|B(x, r)|

∫
B(x,r)

∥f(y)− f(x)∥X dy = 0,

casi en todas partes. A los puntos que lo satisfacen se les llama puntos de Lebesgue.

Ahora, se presenta una caracterización de pesos para los cuales el operador maximal de Hardy-
Littlewood es continuo.

Definición 5.1.31 (Clases de pesos de Muckenhoupt). Para un par de funciones localmente inte-
grables no-negativas u,w : Ω ⊂ Rn → C, se dice que pertenece a la clase de pesos de Muckenhoupt
Ap, si

Mu(x) ≲ w(x), casi para todo x, p = 1;

sup
Q

(
1

|Q|

∫
Q

u(x) dx

)(
1

|Q|

∫
Q

w(x)−1/(p−1) dx

)p−1

<∞, 1 < p <∞.

Teorema 5.1.32. Se tiene que el operador maximal de Hardy-Littlewood es de tipo débil (p, p),
respecto a las medidas (u,w) si y solo si (u,w) ∈ Ap.



CAPÍTULO 5. PRELIMINARES 17

Demostración. (⇒) Primero, suponga que f es no-negativa, note que si fQ := 1
|Q|
∫
Q
f dx, entonces

fQ ≤ M(fχQ)(x) para cualquier x ∈ Q. Por lo que para cualquier λ < fQ, se tiene que Q ⊂ Eλ,Q :=
{x ∈ Ω : M(fχQ)(x) > λ}, y

u(Q) ≤ u(Eλ,Q) ≲ λ−p

∫
Q

|f(x)|p dw(x),

(fQ)
pu(Q) ≲

∫
Q

|f(x)|p dw(x).

Particularmente, para cualquier conjunto medible S ⊂ Q, se puede cambiar f por fχS y obtener(
1

|Q|

∫
S

|f(x)|dx
)p

u(Q) ≲
∫
S

|f(x)|p dw(x). (5.1.3)

Ahora, se puede ignorar el caso trivial u(x) = 0, casi en todas partes, y se fija f = χS , para obtener

|S|pu(Q) ≲ |Q|pw(S),

y concluir que w(x) > 0 casi en todas partes. Cuando p = 1, fije t > ess infQ w ,y para St := {x ∈
Ω : w(x) < t}, se tiene que |St| > 0, que u(Q)/|Q| ≲ t, y que

1

|Q|

∫
Q

u(x) dx ≲ ess inf
Q

w ≤ w(x),

para casi todo x ∈ Q. Es fácil ver que esto implica la condición A1. Cuando 1 < p <∞, se considera
la función f(x) := w(x)−1/(p−1), de tal manera que f(x) = f(x)pw(x), y con Sk := {x ∈ Q : w(x) >
1/k} en (5.1.3), se tiene que(

1

|Q|

∫
Sk

w(x)−1/(p−1) dx

)p

u(Q) ≲
∫
Sk

w(x)−1/(p−1) dx.

Además, como f está acotado en Sk, se puede manipular para obtener(
1

|Q|

∫
Sk

w(x)−1/(p−1) dx

)p−1(
1

|Q|

∫
Q

du(x)

)
≤ C.

Como w(x) > 0 casi en todas partes, se tiene que Q \
⋃

k Sk tiene medida cero y se puede concluir
la condición Ap al hacer k → ∞(

1

|Q|

∫
Q

w(x)−1/(p−1) dx

)p−1(
1

|Q|

∫
Q

du(x)

)
≤ C.

(⇐) Para p = 1, por la continuidad débil del operador de Hardy-Littlewood, se tiene que

w{Mf > λ} ≲ λ−1

∫
Ω

|f(x)|Mw(x) dx ≲ λ−1

∫
Ω

|f(x)|w(x) dx = ∥f∥L1(w).

Cuando 1 < p <∞, se utiliza la desualdad de Hölder para tener que

fQ =
1

|Q|

∫
Q

|f(x)|w(x)1/pw(x)−1/p dx

≤
(

1

|Q|

∫
Q

|f(x)|pw(x) dx
)1/p(

1

|Q|

∫
Q

w(x)−1/(p−1) dx

)(p−1)/p

.

Entonces, se tiene que

(fQ)
pu(Q) ≤ u(Q)

|Q|

(∫
Q

|f(x)|pw(x) dx
)(

1

|Q|

∫
Q

w(x)−1/(p−1) dx

)p−1

≲
∫
Q

|f(x)|pw(x) dx.

Entonces, se obtiene (5.1.3), que implica la desigualdad débil.
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Corolario 5.1.33. Sea (u,w) ∈ Ap, entonces el operador r-maximal de Hardy Littlewood es continuo
desde Lq(Ω;X;w) hacia Lq(Ω;C;u), para p < q/r ≤ ∞.

Demostración. Primero, considere el caso r = 1. En vista del Teorema de Interpolacieón de Marcin-
kiewicz, solo queda demostrar la continuidad para q = ∞. Primero, como u(E) > 0 implica |E| > 0,
se tiene que

∥Mf∥L∞(u) ≤ ∥Mf∥L∞ .

Por otra parte, como w(x) > 0 casi en todas partes, se tiene que |E| > 0, implica w(E) > 0 y que

∥f∥L∞ ≤ ∥f∥L∞(w).

Como además, ∥Mf∥L∞ ≤ ∥f∥L∞ , se concluye la prueba para este caso. Ahora, como Mrf =
M(∥f∥rX)1/r, se tiene que∫

Ω

(Mrf)
q du(x) =

∫
Ω

M(∥f∥rX)q/r du(x) ≲
∫
Ω

∥f∥qX dw(x),

Nota 5.1.34. Note que este caso incluye el caso particular para las medidas (w,Mw).
Además, (5.1.3) brinda otro corolario acerca de las medidas de conjuntos

Corolario 5.1.35. Sean w ∈ Ap, y sea 0 < α < 1. Sea un conjunto medible S ⊂ Q, donde Q es un
cubo, tal que |S| ≤ α|Q|, entonces existe 0 < β < 1, tal que w(S) ≤ βw(Q).

Demostración. Considere χQ\S en lugar de S, entonces

(|Q| − |S|)pw(Q) ≤ C|Q|p[w(Q)− w(S)],

w(Q)(1− α)p ≤ C[w(Q)− w(S)],

w(S) ≤ C − (1− α)p

C
w(Q),

lo que concluye la prueba.

Teorema 5.1.36 (Desigualdad inversa de Hölder). Sea w ∈ Ap, entonces existe ε > 0, tal que se
tiene que para cualquier cubo(

1

|Q|

∫
Q

w1+ε dx

)1/(1+ε)

≲
1

|Q|

∫
Q

w dx.

Demostración. Tome un cubo Q, y un α fijo, tal que 0 < α < 1, defina entonces la sucesión
λk := (2nα−1)kw(Q)/|Q|, de tal manera que 2nλk/λk+1 = α. Entonces tome la descomposición de
Calderón-Zygmund de w en el cubo Q para todo λk, para así obtener sucesiones de cubos diádicos
{Qk

j } disjuntos tales que w(x) > λk para casi todo x ∈ Ωk :=
⋃

j Q
k
j , y

λk <
1

|Qk
j |

∫
Qk

j

w dx ≤ 2nλk.

Ahora, fije un cubo Qk
j , entonces Qk

j ∩ Ωk+1 es la union de cubos Qk+1
i y se tiene que

|Qk
j ∩ Ωk+1| =

∑
i

|Qk+1
i |

≤ 1

λk+1

∑
i

∫
Qk+1

i

w dx

≤ 1

λk+1

∫
Qk

j

w dx

≤ 2nλk
λk+1

|Qk
j | = α|Qk

j |.
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Entonces, como w ∈ Ap, existe 0 < β < 1, tal que w(Qk
j ∩ Ωk+1) ≤ βw(Qk

j ). Al sumar respecto a
todos loss cubos Qk

j se obtiene que

w(Ωk+1) ≤ βw(Ωk), y que w(Ωk) ≤ βkw(Ω0).

Entonces, se tiene que

1

|Q|

∫
Q

w1+ε dx =
1

|Q|

∫
Q\Ω0

w1+ε dx+
1

|Q|
∑
k

∫
Ωk\Ωk+1

w1+ε dx

≤ λε0
w(Q)

|Q|
+

1

|Q|
∑
k

λεk+1w(Ωk)

≤ λε0
w(Q)

|Q|
1

|Q|
∑
k

(2nα−1)(k+1)ελε0β
kw(Ω0).

Entonces basta escoger ε, para que (2nα−1)εβ < 1, para poder estimar mediante

λε0
w(Q)

|Q|
+

C

|Q|
λε0w(Ω0) ≲ λε0

w(Q)

|Q|
=

(
w(Q)

|Q|

)1+ε

.

Lo que completa la prueba.

Una consecuencia inmediata es que

Corolario 5.1.37. Se tiene que

1. Si w ∈ Ap, entonces w1−p′ ∈ Ap′ ,

2. Ap =
⋃

q<pAq, para 1 < p <∞,

3. sea w ∈ Ap, entonces, existe ε > 0, tal que w1+ε ∈ Ap.

Demostración. Para el primer inciso, se tiene que

sup
Q

(
1

|Q|

∫
Q

w1−p′
dx

)(
1

|Q|

∫
Q

w(x)−(1−p′)/(p′−1) dx

)p′−1

<∞,

es la condición Ap elevada a p′ − 1, como 1 − p′ = −1/(p − 1), y −(1 − p′)/(p′ − 1) = 1. Para el
segundo inciso, se utiliza la desigualdad inversa de Hölder con w1−p′

, para tener que existe algún
ε > 0 tal que (

1

|Q|

∫
Q

w(1−p′)(1+ε) dx

)1/(1+ε)

≲
1

|Q|

∫
Q

w1−p′
dx.

Entonces, tome q, tal que 1− q′ = (1− p′)(1 + ε). De esta manera, q < p, y(
1

|Q|

∫
Q

w dx

)(
1

|Q|

∫
Q

w(x)1−q′ dx

)q−1

≲

(
1

|Q|

∫
Q

w dx

)(
1

|Q|

∫
Q

w(x)1−p′
dx

)p−1

,

como (q−1)(1+ε) = p−1. Entonces, se cumple que w ∈ Aq. Para el tercer inciso. Si p = 1, entonces
se tiene que para cada cubo Q y para casi todo x ∈ Q, se cumple que

1

|Q|

∫
Q

w1+ε dy ≲ w(x)1+ε.

Cuando p > 1, tome ε tal que la desigualdad inversa de Hölder funciona para w y w1−p′
. Entonces

la condición Ap para w1+ε se vuelve la condición Ap de w elevada a la 1/(1+ ε). Lo que concluye la
prueba.
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Ahora, se presenta el concepto de dualidad entre espacios de Lebesgue valuados en espacios de
Banach

Definición 5.1.38 (Propiedad de Radon-Nikodym). Se dice que un espacio de Banach X satisface
la propiedad de Radon-Nikodym si para cualquier medida valuada en vectores, se puede encontrar
una función (fuertemente) medible que sea su densidad.

Teorema 5.1.39. Suponga X ′ satisface la propiedad de Radon-Nikodym, entonces Lp(Ω;X)′ =
Lp′

(Ω;X ′).

Demostración. Es claro que si f ∈ Lp′
(Ω;X ′), entonces∫

Ω

|⟨f, g⟩|dx ≤ ∥f∥Lp′∥g∥Lp ,

para cualquier g ∈ Lp(Ω;X). Ahora, sea un funcional continuo T : Lp(Ω;X) → C. Entonces, se
define la medida valuada en X ′, como ⟨ν(E), x⟩ := T (χE · x). Por la propiedad de Radon-Nikodym,
se puede encontrar f : Ω → X ′ fuertemente medible tal que∫

Ω

⟨f, χE · x⟩ dy =

〈∫
E

f dy, x

〉
= ⟨ν(E), x⟩ = T (χE · x),

para todo x ∈ X y E medible. Como esto funciona para toda las funciones simples, entonces
vale para todas las funciones fuertemente medibles. Además, como T es continuo, se tiene que
∥f∥Lp′ = ∥T∥.

Para concluir, se incluye una desigualdad bastante útil.

Teorema 5.1.40 (Hardy-Littlewood-Sobolev). Sea 0 < α < n, y sean 1 < p < q <∞ tales que

1

q
=

1

p
− α

n
.

Además, si se define el potencial de Riesz como

Iαf(x) :=

∫
Ω

f(x) dx

|x− y|n−α
,

entonces ∥Iαf∥Lq ≲ ∥f∥Lp .

Demostración. Note que∫
Rn

f(y) dy

|x− y|n−α
=

∫ ∞

0

rn−1

rn−α

∫
Sn−1

f(x+ rz) dσ(z) dr =

∫ ∞

0

rα−1fx(r) dr,

donde fxr =
∫
Sn−1 f(x+ rz) dσ(z). Entonces, ∥fx(r)∥X ≤ Mf(x), y por la desigualdad de Hölder

∥fx(r)∥X ≲ r−n

∫
B(x,r)

|f(y)| dy ≲ r−n∥f∥Lprn(p−1)/p = r−n/p.

Por lo que, para algún rx,

∥Iαf(x)∥X ≤
∫ rx

0

rα−1Mf(x) dr +

∫ ∞

rx

rα−1r−n/p∥f∥Lp dr ≲ Mf(x)rαx + ∥f∥Lprα−n/p
x .

Al tomar rx := [Mf(x)]−p/n∥f∥p/nLp , se tiene que

∥Iαf(x)∥X ≲ [Mf(x)]1−αp/n∥f∥αp/nLp .

Además, por la continuidad del operador maximal de Hardy-Littlewood

∥Iαf(x)∥qLq ≲ ∥f∥αpq/nLp

∫
Rn

Mf(x)(1−αp/n)q dx ≲ ∥f∥αpq/nLp ∥f∥(1−αp/n)q

L(1−αp/n)q .

Entonces, el resultado se obtiene cuando (1− αp/n)q = p.
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5.2. Transformada de Fourier en Rn

Ahora, se procede a definir y mostrar propiedades importantes de la transformada de Fourier, una
herramienta fundamental para el estudio de las ecuaciones diferenciales en general y los operadores
pseudo-diferenciales en particular.

Definición 5.2.1 (Transformada de Fourier en Rn). Dada f ∈ L1(Rn;X), se define su transformada
de Fourier como

(FRnf)(ξ) = f̂(ξ) :=

∫
Rn

e−2πix·ξf(x) dx,

para cualquier ξ ∈ Rn.

Proposición 5.2.2. La transformada de Fourier es un operador continuo FRn : L1(Rn;X) →
L∞(Rn;X) con norma uno:

∥f̂∥L∞ ≤ ∥f∥L1 .

Además, f̂ es continua en todas partes.

Demostración. El estimativo es resultado de la desigualdad de Minkowski para integrales clásica∥∥∥∥∫
Rn

e−2πix·ξf(x) dx

∥∥∥∥
X

≤
∫
Rn

∣∣e−2πix·ξ∣∣ ∥f(x)∥X dx

≤ ∥f∥L1 .

Ahora, la continuidad es consecuencia del teorema de convergencia dominada de Lebesgue. Para
cualquier ξk → ξ se define

hk(x) := e−2πix·ξkf(x)

Entonces, se tiene que |hk| ≤ |f | y se obtiene que∫
Rn

e−2πix·ξf(x) dx = ĺım
k→∞

∫
Rn

e−2πix·ξkf(x) dx.

Que es exactamente f̂(ξ) = ĺım f̂(ξk), el resultado deseado.

A pesar de que la transformada de Fourier está bien definida en el espacio L1(Rn;X), este
presenta ciertas limitaciones técnicas debido a los pocos requerimientos de regularidad para las
funciones en este espacio. Es muy útil tener acceso a otras herramientas resultantes de continuidad,
diferenciabilidad, y decaimiento. Por lo tanto, se introduce notación que será importante a lo largo
de este trabajo.

Definición 5.2.3 (Notación de multi-índice). Para α := (α1, . . . , αn), β := (β1, . . . , βn) ∈ Nn
0 , se

define
∂α :=

∂α1

∂xα1
1

· · · ∂
αn

∂xαn
n
.

De forma similar, xβ := xβ1

1 · · ·xβn
n . Se dice que α ≤ β si αi ≤ βi para todo i. Además, se denota la

longitud del multi-índice como |α| := α1 + · · ·αn y su factorial como α! := α1! · · ·αn!.

Definición 5.2.4 (Espacio de Schwartz S(Rn)). Se dice que una función suave (infinitamente dife-
renciable) φ : Rn → X decae rápidamente, y se encuentra en S(Rn;X) si se cumple que

sup
x∈Rn

∥xβ∂αφ(x)∥X <∞,

para cualesquiera multi-índices α, β ∈ Nn
0 . Ahora, se dice que φj → φ en S(Rn;X) si

sup
x∈Rn

∥xβ∂α(φj − φ)(x)∥X → 0,

cuando j → ∞ para cualesquiera multi-índices α, β ∈ Nn
0 .
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Proposición 5.2.5. Para cualquier 1 ≤ p ≤ ∞ se tiene que S(Rn;X) ⊂ Lp(Rn;X) con encaje
continuo.

Demostración. El caso p = ∞ es trivial, pues las funciones en el espacio de Schwartz son acotadas
por definición. Sea φj → 0 en S(Rn;X), entonces∫

Rn

∥φj(x)∥pX dx =

∫
Rn

⟨x⟩pN∥φj(x)∥pX⟨x⟩−pN dx

≲ máx
|β|≤N

sup
x∈Rn

∥xβφj(x)∥pX
∫
Rn

⟨x⟩−pN dx→ 0,

donde N ∈ N se escoge de manera que la última integral converga.

Aún más, es densa en estos espacios.

Teorema 5.2.6. El espacio S(Rn;X) es secuencialmente denso en Lp(Rn;X), para 1 ≤ p ≤ ∞.

Demostración. Primero, supónga 1 ≤ p < ∞. Tome una función ψ ∈ C∞
0 (Rn), tal que es igual a

uno en una vecindad del origen, no-negativa, y tal que
∫
ψ = 1. Entonces tome ψk(x) := k−nψ(kx),

y defina fk := ψk ∗ f . Por lo que

∥fk − f∥Lp ≤
∫
Rn

∥f(· − y)− f(·)∥Lpk−nψ(ky) dy =

∫
Rn

∥f(· − y/k)− f(·)∥Lpψ(y) dy → 0,

por el Teorema de diferenciación de Lebesgue. Ahora, si p = ∞, se tiene que la clase de Schwartz es
secuencialmente densa en el espacio de funciones continuas, por un argumento similar al anterior,
que a su vez son densas en L∞.

Teorema 5.2.7. Sea φ ∈ S(Rn;X). Entonces 2πiξjφ̂(ξ) = ∂̂jφ(ξ) y 2πix̂jφ(ξ) = −∂jφ̂(ξ)

Demostración. Para la primera expresión se procede por integración por partes

∂̂jφ(ξ) =

∫
Rn

e−2πix·ξ∂xjφ(x) dx

= −
∫
Rn

(∂ξje
−2πix·ξ)φ(x) dx

= 2πiξj

∫
Rn

e−2πix·ξφ(x) dx.

Se nota que no aparece el término con la frontera debido a que φ se desvanece en el infinito. Ahora,
para la segunda expresión

∂ξj φ̂(ξ) =

∫
Rn

e−2πix·ξ(−2πixj)φ(x) dx.

Concluyendo la prueba.

Por lo que se puede concluir lo siguiente

Corolario 5.2.8. Sea φ ∈ S(Rn;X). Entonces,

ξβ∂αφ̂(ξ) = (2πi)|α|−|β|(−1)|α| ̂∂β [xαφ](ξ).

Por lo que

∥ξβ∂αφ̂(ξ)∥X ≤ |2πi||α|−|β|
∫
Rn

∥∂β [xαφ(x)]∥X dx

≤ |2πi||α|−|β| sup
x∈Rn

∥∥(1 + |x|)n+1∂β [xαφ(x)]
∥∥
X

∫
Rn

(1 + |x|)−n−1 dx

= C sup
x∈Rn

∥∥(1 + |x|)n+1∂β [xαφ(x)]
∥∥
X

<∞.
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Particularmente, FRn mapea S(Rn) en sí mismo. Además, por el teorema de convergencia dominada
de Lebesgue, la transformada de Fourier es un operador continuo.

En realidad, es un isomorfismo en S(Rn;X). Para ello se demostrarán algunos lemas útiles.

Lema 5.2.9 (Fórmula de multiplicación para la transformada de Fourier). Sean f ∈ L1(Rn;B(X,Y )),
y g ∈ L1(Rn;X). Entonces,

∫
Rn f̂g dx =

∫
Rn fĝ dx.

Demostración. Aplicando el teorema de Fubini∫
Rn

f̂g dx =

∫
Rn

[∫
Rn

e−2πix·yf(y) dy

]
g(x) dx

=

∫
Rn

f(y)

[∫
Rn

e−2πix·yg(x) dx

]
dy

=

∫
Rn

fĝ dy.

Concluyendo la prueba.

Lema 5.2.10 (Transformada de Fourier para Gaussiana). Se tiene que∫
Rn

e−2πix·ξe−επ2|x|2 dx = (πε)−n/2e−|ξ|2/ε,

para todo ε > 0. Gracias al cambio de variable x 7→ 2πx y ε 7→ 2ε, esto equivale a∫
Rn

e−ix·ξe−ε2|x|2/2 dx = (2π/ε)−n/2e−|ξ|2/(2ε).

Demostración. La segunda expresión sigue del caso unidimensional∫ ∞

−∞
e−itτe−t2/2 dt = e−τ2/2

∫ ∞

−∞
e−(t+iτ)2/2 dt

= e−τ2/2

∫ ∞

−∞
e−t2/2 dt

=
√
2πe−τ2/2.

Con el cambio de variable t 7→
√
εt y τ 7→ τ/

√
τ se tiene que

√
ε

∫ ∞

−∞
e−itτe−εt2/2 dt =

√
2πe−τ2/(2ε).

El caso multidimensional sigue del producto de las integrales unidimensionales.

Teorema 5.2.11 (Fórmula de inversión de Fourier). La transformada de Fourier es un isomorfismo
de S(Rn;X) en si mismo con inverso dado por

(F−1
Rn f)(x) :=

∫
Rn

e2πix·ξf(ξ) dξ.

Demostración. El teorema de convergencia dominada de Lebesgue permite realizar la sustitución

(F−1
Rn φ̂)(x) =

∫
Rn

e2πix·ξφ̂(ξ) dξ = ĺım
ε→0

∫
Rn

e2πix·ξφ̂(ξ)e−2επ2|ξ|2 dξ

= ĺım
ε→0

∫
Rn

∫
Rn

e2πi(x−y)·ξφ(y)e−2επ2|ξ|2 dy dξ.
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Con el cambio de variable y 7→ y + x se obtiene que

(F−1
Rn φ̂)(x) = ĺım

ε→0

∫
Rn

∫
Rn

e−2πiy·ξφ(y + x)e−2επ2|ξ|2 dy dξ.

Por el teorema de Fubini y la transformada de Fourier para Gaussianas se tiene que

(F−1
Rn φ̂)(x) = ĺım

ε→0

∫
Rn

φ(y + x)

∫
Rn

e−2πiy·ξe−2επ2|ξ|2 dξ dy

= ĺım
ε→0

∫
Rn

φ(y + x)(2πε)−n/2e−|y|2/(2ε) dy

Con un último cambio de variable y 7→
√
εz se concluye

(F−1
Rn φ̂)(x) = ĺım

ε→0

∫
Rn

φ(
√
εz + x)(2π)−n/2e−|z|2/2 dz

= (2π)−n/2φ(x)

∫
Rn

e−|z|2/2 dz = φ(x).

Finalizando con la prueba.

El siguiente teorema relaciona la transformada de Fourier con las convoluciones

Teorema 5.2.12. Sean ψ ∈ S(Rn;X), y φ ∈ S(Rn;B(X,Y )), entonces se cumple que φ̂ ∗ ψ(ξ) =
φ̂(ξ)ψ̂(ξ), que φ̂ψ(ξ) = (φ̂∗ψ̂)(ξ). En particular, si ψ,φ ∈ S(Rn;H), entonces

∫
(φ,ψ)H =

∫
(φ̂, ψ̂)H.

Demostración. Para la primera expresión se tiene que

φ̂ ∗ ψ(ξ) =
∫
Rn

e−2πix·ξ(φ ∗ ψ)(x) dx

=

∫
Rn

∫
Rn

e−2πi(x−y)·ξφ(x− y)e−2πiy·ξψ(y) dy dx

=

∫
Rn

∫
Rn

e−2πiz·ξφ(z)e−2πiy·ξψ(y) dy dz

= φ̂(ξ)ψ̂(ξ).

Ahora, para la segunda expresión

(φ̂ ∗ ψ̂)(ξ) =
∫
Rn

φ̂(ξ − y)ψ̂(y) dy

=

∫
Rn

∫
Rn

e−2πix·(ξ−y)φ(x)ψ̂(y) dx dy

=

∫
Rn

e−2πix·ξφ(x)

[∫
Rn

e2πix·yψ̂(y) dy

]
dx

=

∫
Rn

e−2πix·ξφ(x)ψ(x) dx = φ̂ψ(ξ).

Para la tercera expresión se define χ := (·, ψ̂)H, entonces∫
Rn

(φ,ψ)H =

∫
Rn

χ̂φ =

∫
Rn

χφ̂ =

∫
Rn

(φ̂, ψ̂)H.

Completando la prueba.

Nota 5.2.13. Cuando φ = ψ, se tiene la indentidad de Plancherel
∫
∥φ∥2H =

∫
∥φ̂∥2H. Esta puede

extenderse para funciones en L2 como se sabe que la clase de Schwartz es densa. Además, se puede
extender al caso general X.
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Teorema 5.2.14 (Identidad de Plancherel). Para f ∈ L2(Rn;X), se tiene que ∥f∥L2 = ∥f̂∥L2 .

Demostración. Tome una función simple f =
∑m

j xjχEj
, entonces para cualquier x∗ ∈ X ′, se tiene

que ⟨x∗, f⟩ ∈ L2(Rn). Por la identidad de Plancherel para espacios de Hilbert, se tiene que∫
Rn

|⟨x∗, f⟩|2 =

∫
Rn

m∑
j

|⟨x∗, xj⟩|2χEj =

m∑
j

|⟨x∗, xj⟩|2|Ej | =
m∑
j

|⟨x∗, xj⟩|2
∫
Rn

|χ̂Ej |2 =

∫
Rn

|⟨x∗, f̂⟩|2,

como
∫
|χ̂Ej

|2 =
∫
χEj

= |Ej |. Ahora, note que la imagen de f está contenida en un espacio finito
dimensional Y generado por los xj . Por lo que existen funcionales x∗1, . . . , x∗k tales que

∥x∥2X =

k∑
ℓ

|⟨x∗ℓ , x⟩|2.

La prueba se concluye al tomar la suma respecto a estos funcionales.

5.3. Transformada de Fourier en Tn

Se fija la notación del toro n-dimensional como Tn := (R/Z)n = Rn/Zn. Esta identificación se
realiza tanto en el contexto de grupo aditivo cociente como en el de topología cociente. Se suele
identificar a Tn con [0, 1)n como subconjunto de Rn, y se fija su medida como la restricción de la
medida euclideana. Se puede entender una función definida en el toro como una función 1-periodica.
Es decir, si g : Rn → C cumple que g(x) = g(x + k) para cualesquiera x ∈ Rn y k ∈ Zn, entonces
puede identificarse con una función f : Tn → C definida como f([x]) = g(x), donde [x] es la clase de
equivalencia de x ∈ Rn en el cociente. No obstante, no es necesario realizar la distinción entre punto
y clase de equivalencia y se denotará x ∈ Tn, de manera similar, se dirá que f = g para los fines de
este trabajo.

Definición 5.3.1 (Espacio de Schwartz S(Zn)). Sea S(Zn;X) el espacio de funciones de decaimiento
rápido φ : Zn → X que satisfacen

∥φ(ξ)∥X ≲M ⟨ξ⟩−M ,

en todo ξ ∈ Zn, para cualquier M > 0. La convergencia de este espacio está dada por las seminormas
pk(φ) := supξ∈Zn⟨ξ⟩k|φ(x)|.

Definición 5.3.2 (Transformada de Fourier periodica). Sea FTn : C∞(Tn;X) → S(Zn;X) la
transformada de Fourier periodica definida por

(FTnf)(ξ) = f̂(ξ) :=

∫
Tn

e−i2πx·ξf(x) dx.

Además, se define la transformada de Fourier periodica inversa F−1
Tn : S(Zn;X) → C∞(Tn;X), como

(F−1
Tn φ)(x) :=

∑
ξ∈Zn

ei2πx·ξφ(ξ).

Teorema 5.3.3. La definición 5.3.2 es válida. Es decir,

1. FTnC∞(Tn;X) ⊂ S(Zn;X),

2. F−1
Tn S(Zn;X) ⊂ C∞(Tn;X),

3. FTn ◦ F−1
Tn y F−1

Tn ◦ FTn son la función identidad en S(Zn;X) y C∞(Tn;X) respectivamente.



CAPÍTULO 5. PRELIMINARES 26

Demostración. Para la primera parte, se toma f ∈ C∞(Tn;X) y α ∈ Nn
0 . Entonces

(−i2πξ)αf̂(ξ) =
∫
Tn

(−i2πξ)αe−i2πx·ξf(x) dx

=

∫
Tn

[∂αx e
−i2πx·ξ]f(x) dx

= (−1)|α|
∫
Tn

e−i2πx·ξ[∂αx f(x)] dx <∞.

Por lo que ∥⟨ξ⟩M f̂(ξ)∥X < ∞ para cualquier M < ∞, y f̂ ∈ S(Zn;X). Para la segunda parte, se
toma φ ∈ S(Zn;X) y se tiene que

∥∂αx [F−1
Tn φ(x)]∥X ≤

∑
ξ∈Zn

∥∥∂αx ei2πx·ξφ(ξ)∥∥X ≲M

∑
ξ∈Zn

|ξα|⟨ξ⟩−M <∞,

para M lo suficientemente grande. Por lo que F−1
Tn φ es suave. Para la tercera parte, primero se

aprovecha la convergencia uniforme para tener que

[FTn(F−1
Tn φ)](ξ) =

∫
Tn

e−i2πx·ξ
∑
η∈Zn

ei2πx·ηφ(η) dx

=
∑
η∈Zn

φ(η)

∫
Tn

ei2πx·(η−ξ) dx

=
∑
η∈Zn

φ(η)δη,ξ = φ(ξ).

Por otra parte, se tiene que

[F−1
Tn (FTnf)](x) =

∑
ξ∈Zn

ei2πx·ξ
∫
Tn

e−i2πy·ξf(y) dy

=

∫
Tn

∑
ξ∈Zn

ei2π(x−y)·ξf(y) dy

= ĺım
α→∞

∫
Tn

∑
ξ≤α

ei2πy·ξf(x− y) dy

=: ĺım
α→∞

∫
Tn

Dα(y)f(x− y) dy

=: ĺım
α→∞

Sαf(x).

A Dα se le conoce como el kernel de Dirichlet y a Sα como el operador de sumas parciales. Se puede
trabajar el kernel de Dirichlet para obtener que

Dα(y) =
∑
ξ≤α

ei2πy·ξ

=

n∏
j=1

αj∑
ξj=−αj

ei2πyjξj

=

n∏
j=1

e−i2παjyj

(
ei2π(2αj+1)yj − 1

ei2πyj − 1

)

=

n∏
j=1

sin(π(2αj + 1)yj)

sin(πyj)
.
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Ahora, se utiliza el método de sumabilidad de Césaro, que indica que el promedio de una sucesión
converge al mismo límite que el límite de la sucesión, para definir el kernel de Fejér como

σNf(x) :=
1

(N + 1)n

∑
∥α∥∞≤N

Sαf(x)

=

∫
Tn

1

(N + 1)n

∑
∥α∥∞≤N

Dα(y)f(x− y) dy

=:

∫
Tn

FN (y)f(x− y) dy.

El kernel de Fejér se puede reescribir notando que ei2πyjξj aparece exactamente N + 1 − |ξj | veces
en la sumatoria, obteniendo que

FN (y) =
1

(N + 1)n

n∏
j=1

N∑
ξj=−N

(N + 1− |ξj |)ei2πyjξj

=
1

(N + 1)n

n∏
j=1

N∑
k=0

k∑
ξj=−k

ei2πyjξj .

Ahora, note que tiene una forma similar al kernel de Dirichlet para obtener que

FN (y) =
1

(N + 1)n

n∏
j=1

N∑
k=0

sin(π(2k + 1)yj)

sin(πyj)

=
1

(N + 1)n

n∏
j=1

N∑
k=0

sin(π(2k + 1)yj) sin(πyj)

sin2(πyj)

=
1

2(N + 1)n

n∏
j=1

N∑
k=0

cos(2kπyj)− cos(2(k + 1)πyj)

sin2(πyj)

=
1

2(N + 1)n

n∏
j=1

1− cos(π(N + 1)yj)

sin2(πyj)

=
1

(N + 1)n

n∏
j=1

[
sin(π(N + 1)yj)

sin(πyj)

]2
.

Este kernel tiene las propiedades que FN ≥ 0, que
∫
Tn FN (y) dy = 1, y que para δ > 0 se tiene que

ĺım
N→∞

∫
δ<|y|

FN (y) dy ≤ ĺım
N→∞

1

(N + 1)n sin2n(πδ)
= 0.

Entonces, se puede concluir que

∥σNf(x)− f(x)∥X ≤
∫
Tn

∥f(x− y)− f(x)∥XFN (y) dy

≤
∫
|y|<δ

∥f(x− y)− f(x)∥XFN (y) dy + 2∥f∥L∞

∫
Tn

FN (y) dy → 0,

debido a que el primer término puede ser controlado escogiendo δ lo suficientemente pequeño gracias
a la continuidad de f , y el segundo termino puede controlarse al escoger N una vez fijado δ. Esta
convergencia es uniforme respecto a x debido a la compacidad de Tn. Por lo que se justifica la
definición de la transformada de Fourier y su inversa.
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Nota 5.3.4. En la demostración anterior se utilizan técnicas de sumabilidad que son frecuentes en
el análisis de Fourier. Para mayor detalle sobre estas técnicas y el análisis de Fourier se recomienda
al lector revisar Duoandikoetxea [18]. Por otra parte, estas técnicas pueden ser utilizadas para
demostrar la convergencia de estas series en la norma Lp.

Teorema 5.3.5. La serie de Fourier de f converge a f en la norma Lp(Tn;X).

Demostración. Para el operador de Césaro σN y el kernel de Fejér se tiene que

∥σNf − f∥Lp ≤
∫
Tn

∥f(· − y)− f(·)∥LpFN (y) dy

≤
∫
|y|<δ

∥f(· − y)− f(·)∥LpFN (y) dy + 2∥f∥Lp

∫
Tn

FN (y) dy → 0,

donde, de nuevo, se puede controlar el primer término con δ y el segundo escogiendo un N apropiado.

Definición 5.3.6 (Espacios de sucesiones ℓp(C)). El espacio de sucesiones ℓp(C;X), para C un
conjunto enumerable, consiste de las funciones a : C :→ X, tales que

∥a∥ℓp :=

(∑
k∈C

∥ak∥pX

)1/p

<∞.

Generalmente, C = Zn.

Teorema 5.3.7 (Identidad de Plancherel). Si u ∈ L2(Tn;X), entonces û ∈ ℓ2(Zn;X), y se cumple
que

∥û∥ℓ2 = ∥u∥L2 .

Demostración. Primero, suponga que X = H un espacio de Hilbert, entonces

(u, SNu)L2 =

∫
Tn

u(x), ∑
|ξ|≤N

û(ξ)ei2πx·ξ


H

dx

=
∑

|ξ|≤N

(
û(ξ),

∫
Tn

u(x)e−i2πx·ξ
)

H
dx

=
∑

|ξ|≤N

(û(ξ), û(ξ)))H = ∥ûN∥2ℓ2 .

Entonces, se tiene que

∥u− SNu∥2L2 = ∥u∥2L2 − (u, SNu)L2 − (SNu, u)L2 + ∥SNu∥2L2

= 2∥u∥2L2 − 2∥ûN∥2ℓ2 .

Por continuidad de las normas, se obtiene la identidad deseada al hacer N → ∞. Cuando X es
un espacio de Banach general, tome una función simple f =

∑m
j xjχEj . Entonces, para cualquier

x∗ ∈ X ′, se cumple que∫
Tn

|⟨x∗, f⟩|2 =

∫
Tn

m∑
j

|⟨x∗, xj⟩|2χEj
=

m∑
j

|⟨x∗, xj⟩|2|Ej | =
m∑
j

|⟨x∗, xj⟩|2
∑
Zn

|χ̂Ej
|2 =

∑
Zn

|⟨x∗, f̂⟩|2,

como
∑

|χ̂Ej
|2 =

∫
χEj

= |Ej |. Ahora, note que la imagen de f está contenida en un espacio finito
dimensional Y generado por los xj . Por lo que existen funcionales x∗1, . . . , x∗k tales que

∥x∥2X =

k∑
ℓ

|⟨x∗ℓ , x⟩|2.

La prueba se concluye al tomar la suma respecto a estos funcionales.
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5.4. Distribuciones y espacios de Sobolev en Rn

En esta sección se inicia introduciendo el espacio de distribuciones templadas que permite exten-
der la transformada de Fourier a un espacio más general que L1(Rn;X).

Definición 5.4.1 (Distribuciones templadas S ′(Rn;X)). Se define el espacio de distribuciones tem-
pladas como el espacio de operadores lineales continuos u : S(Rn) → X. En este caso, se entiende
la continuidad en el sentido que si φj → φ en S(Rn), entonces se tiene que u(φj) → u(φ) en X.
Además, se dice que uj → u en S ′(Rn;X) si uj(φ) → u(φ) para todo φ ∈ S(Rn).

Las funciones en S(Rn) se les conoce como las funciones de prueba del espacio de distribuciones
templadas. Otra notación usual para u(φ) es ⟨u, φ⟩.
Nota 5.4.2 (Funciones como distribuciones). Se puede considerar a f ∈ Lp(Rn;X) como una distri-
bución templada. Se define el funcional uf de la siguiente manera

⟨uf , φ⟩ :=
∫
Rn

fφdx.

Claramente es un funcional lineal. La continuidad es resultado de la desigualdad de Hölder y el
encaje continuo de las funciones de prueba en el espacio Lp′

. En efecto, para φj → φ en S(Rn) se
tiene que

|⟨uf , φj⟩ − ⟨uf , φ⟩| ≤ ∥f∥Lp∥φj − φ∥Lp′ → 0.

Por simplicidad se denota ⟨uf , φ⟩ = ⟨f, φ⟩. Además, este encaje es continuo, pues si fj → f en
Lp(Rn;X), se tiene que

|⟨fj , φ⟩ − ⟨f, φ⟩| ≤ ∥fj − f∥Lp∥φ∥Lp′ .

Particularmente, para φ ∈ S(Rn;X), se puede motivar la definición de distintas propiedades de
distribuciones mediante la manipulación del funcional uφ mencionado anteriormente. Por ejemplo,
en vista de la integración por partes tenemos que

⟨∂jφ,ψ⟩ =
∫
Rn

(∂jφ)ψ dx = −
∫
Rn

φ(∂jψ) dx = −⟨φ, ∂jψ⟩.

Por lo que definimos la derivada en el sentido de distribuciones de la siguiente manera

Definición 5.4.3 (Derivada distribucional). Para u ∈ S ′(Rn;X) se define

⟨∂αu, φ⟩ := (−1)|α|⟨u, ∂αφ⟩,

para cualquier función de prueba φ y cualquier multi-índice α ∈ Nn
0 .

Ejemplo 5.4.4. Considere la función Heaviside, o escalón, dada por

H(x) :=

{
0, x < 0

1, x ≥ 0
.

Es claro que representa una distribución templada, así que se calcula su derivada distribucional

⟨H ′, φ⟩ = −
∫
R
Hφ′ dx = −

∫ ∞

0

φ′ dx = −φ|∞0 = φ(0) =: ⟨δ, φ⟩.

Donde δ es el funcional conocido como la delta de Dirac. Por lo que se tiene que en el sentido de
distribuciónes que H ′ = δ.

Por otra parte, la fórmula de multiplicación de Fourier motiva la definición de la transformada
de Fourier para distribuciones.
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Definición 5.4.5 (Transformada de Fourier para distribuciones). Para u ∈ S ′(Rn;X) se define

⟨Fu, φ⟩ := ⟨u,Fφ⟩, ⟨F−1u, φ⟩ := ⟨u,F−1φ⟩,

para cualquier función de prueba φ.

Ejemplo 5.4.6. Considere la distribución de la delta de Dirac dada por ⟨δ, φ⟩ := φ(0). Se calcula
su transformada de Fourier de la siguiente manera

⟨Fδ, φ⟩ = ⟨δ, φ̂⟩ = φ̂(0) =

∫
R
φ dx = ⟨1, φ⟩.

Por lo que en el sentido de distribuiciones se tiene que δ̂ = 1 la función constante, que es acotada y
por tanto una distribución. También se puede demostrar que 1̂ = δ. En efecto

⟨F(1), φ⟩ =
∫
R
φ̂dx = F−1(φ̂)(0) = φ(0) = ⟨δ, φ⟩.

Teorema 5.4.7. La transformada de Fourier F es continua en S ′(Rn;X).

Demostración. Sea uj → u en S ′(Rn;X), entonces

ûj(φ) = uj(φ̂) → u(φ̂) = û(φ).

Por lo que es un operador continuo.

Lema 5.4.8. C∞
0 (Rn;X) es secuencialmente denso en S(Rn;X).

Demostración. Sea ψ ∈ C∞
0 (Rn) igual a uno en una vecindad del origen. Entonces se define ψk(x) :=

ψ(x/k) y se puede verificar que ψkφ→ φ en S(Rn;X).

Teorema 5.4.9. C∞
0 (Rn;X) es secuencialmente denso en S ′(Rn;X).

Demostración. Sea u ∈ S ′(Rn;X) y sean ψ,ψk como en la demostración anterior. Entonces se define
⟨ψu, φ⟩ := ⟨u, ψφ⟩, y se tiene que ψku→ u en S ′(Rn). En efecto, por el lema anterior se tiene que

⟨ψku, φ⟩ = ⟨u, ψkφ⟩ → ⟨u, φ⟩.

Similarmente, ψkû → û en S ′(Rn), lo que implica que F−1(ψkû) → u en S ′(Rn) debido a la
continuidad de la transformada de Fourier. Entonces, se tiene que

uk := ψk[F−1(ψkû)] → u

en S ′(Rn). Solo queda demostrar uk ∈ C∞
0 (Rn;X), en el caso general, para cualquier χ ∈ C∞

0 (Rn),
se tiene que

⟨F−1(χû), φ⟩ = ⟨û, χF−1φ⟩ =
∫
Rn

⟨û, χ(ξ)e2πix·ξ⟩φ(x) dx.

Por lo que se puede identificar F−1(χû)(x) = û(χ(ξ)e2πix·ξ), que es continua respecto x y que sus
derivadas respecto a x tienen soporte compacto respecto a ξ, por lo que las derivadas de F−1(χû)(x)
tienen soporte compacto.

Definición 5.4.10 (Espacios de Sobolev). Sea 1 ≤ p ≤ ∞ y sea k ∈ N0. El espacio de Sobolev
W k

p (Rn;X) consiste de todas las funciones f ∈ Lp(Rn;X) tales que para cualquier multi-índice
|α| ≤ k se tiene que ∂αf existe (en el sentido de distribuciones) y pertenece a Lp(Rn;X). Para tales
funciones se define

∥f∥Wk
p
:=

∑
|α|≤k

∥∂αf∥pLp

1/p

,

para 1 ≤ p <∞. Para p = ∞ se define como

∥f∥Wk
∞

:= máx
|α|≤k

∥∂αf∥L∞ .
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Nota 5.4.11. Se advierte al lector que existen otras notaciones disponibles en la literatura. Por
ejemplo Lp

k, o W p,k. Además, cuando p = 2, se suele denotar como Hk.

Teorema 5.4.12. Sea f, g ∈W k
p (Rn;X) y sea α un multi-índice con |α| ≤ k, entonces se tiene que

1. ∂αf ∈ W
k−|α|
p y que ∂α(∂βf) = ∂α+βf = ∂β(∂αf), para todos multi-índices que satisfacen

|α|+ |β| ≤ k,

2. λf + µg ∈W k
p y ∂α(λf + µg) = λ∂αf + µ∂αg, para cualesquiera λ, µ ∈ C,

3. ∥ · ∥Wk
p

es una norma,

4. W k
p (Rn;X) es un espacio de Banach.

Demostración. Los primeros dos incisos son resultado de la definición de derivada en el sentido de
distribuciones. En efecto, para (1) se tiene que

⟨∂α(∂βf), φ⟩ = (−1)|α|⟨∂βf, ∂αφ⟩ = (−1)|α|+|β|⟨f, ∂α+βφ⟩.

El otro caso es análogo. El inciso (2) es resultado de la linealidad de ⟨·, φ⟩. Para el inciso (3) es claro
que ∥λf∥Wk

p
= |λ|∥f∥Wk

p
por lo anterior, y que |f∥Wk

p
= 0 si y solo si f se anula en casi todas partes.

La desigualdad triangular para p = ∞ es trivial, para el caso 1 ≤ p <∞ se tiene que

∥f + g∥Wk
p
=

∑
|α|≤k

∥∂αf + ∂αg∥pLp

1/p

≤

∑
|α|≤k

(∥∂αf∥Lp + ∥∂αg∥Lp)p

1/p

≤

∑
|α|≤k

∥∂αf∥pLp

1/p

+

∑
|α|≤k

∥∂αg∥pLp

1/p

= ∥f∥Wk
p
+ ∥g∥Wk

p
.

Para el inciso (4) se toma una sucesión de Cauchy fj en W k
p . Entonces, ∂αfj es una sucesión de

Cauchy en Lp para todo |α| ≤ k. Como Lp es completo, se tiene que ∂αfj converge a algún gα en
Lp. Entonces, se tiene que

⟨∂αg0, φ⟩ = (−1)|α|⟨g0, ∂αφ⟩
= ĺım

j→∞
(−1)|α|⟨fj , ∂αφ⟩

= ĺım
j→∞

⟨∂αfj , φ⟩

= ⟨gα, φ⟩.

Por lo que ∂αg0 = gα y fj → g0 en W k
p .

Teorema 5.4.13 (Encaje de Sobolev). Sea s ∈ N, tal que s > k + n/2. Entonces se tiene que el
espacio de Sobolev W s

2 (Rn;X) está contenido en el espacio de Hölder Ck(Rn;X) y la inclusión es
continua.

Demostración. Sea u ∈W s
2 (Rn;X), entonces por la identidad de Plancherel se tiene que

∥u∥2W s
2
=
∑
|α|≤s

∥∂αu∥2L2 ∼
∑
|α|≤s

∫
Rn

|ξα|2∥û(ξ)∥2X dξ ∼
∫
Rn

(1 + |ξ|2)s∥û(ξ)∥2X dξ.
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Ahora, basta demostrar que ∂̂αu ∈ L1(Rn;X) para |α| ≤ k, porque esto implicaría que su transfor-
mada inversa es continua y acotada. Utilizando Cauchy-Schwarz, se obtiene que∫

Rn

|ξα|∥û(ξ)∥X dξ ≤
(∫

Rn

(1 + |ξ|2)s∥û(ξ)∥2X dξ

)1/2(∫
Rn

|ξ|2|α|

(1 + |ξ|2)s
dξ

)1/2

≲ ∥u∥W s
2
.

Donde la segunda integral es finita dado que 2|α| − 2s ≤ 2k − 2s < −n. Además, se tiene que

sup ∥∂αu∥X ≤ ∥∂̂αu∥L1 ≲ ∥u∥W s
2
,

por lo que la inclusión es continua y se completa la prueba.

5.5. Distribuciones y espacios de Sobolev en Tn

Teorema 5.5.1 (Distribuciones templadas S ′(Zn;X)). Los elementos u del espacio de distribuciones
templadas S ′(Zn;X), que consiste de operadores lineales continuos de S(Zn) en X, tienen la forma

φ 7→ ⟨u, φ⟩ :=
∑
ξ∈Zn

u(ξ)φ(ξ).

Demostración. Note que se puede definir

u(η) := ⟨u, δη⟩,

y como cada φ ∈ S ′(Zn) puede ser escrito como

φ(ξ) =
∑
η∈Zn

φ(η)δη(ξ),

entonces se concluye que

⟨u, φ⟩ =

〈
u,
∑
η∈Zn

φ(η)δη

〉
=
∑
η∈Zn

φ(η)⟨u, δη⟩ =
∑
η∈Zn

φ(η)u(η).

Definición 5.5.2. El espacio de distribuciones periódicas D′(Tn;X) consiste de los operadores
lineales continuos definidos de C∞(Tn) en X. Note que esto incluye a las funciones f ∈ Lp(Tn;X)
con 1 ≤ p ≤ ∞ definiendo su operador correspondiente de la siguiente manera

⟨f, φ⟩ :=
∫
Tn

fφdx.

Además, similarmente al caso euclideano, se define la derivada distribucional como a continuación

⟨∂αu, φ⟩ := (−1)|α|⟨u, ∂αφ⟩.

Definición 5.5.3. Se define la transformada de Fourier periodica en el sentido de distribuciones
como un operador FTn : D′(Tn) → S ′(Zn) de la siguiente manera

⟨FTnu, φ⟩ := ⟨u, ı ◦ F−1
Tn φ⟩,
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donde (ı ◦ ψ)(x) = ψ(−x). Esta definición es consistente cuando u ∈ C∞(Tn;X). En efecto,

⟨û, φ⟩ =
∑
ξ∈Zn

û(ξ)φ(ξ)

=
∑
ξ∈Zn

φ(ξ)

∫
Tn

e−i2πx·ξu(x) dx

=

∫
Tn

∑
ξ∈Zn

φ(ξ)ei2π(−x)·ξu(x) dx

=

∫
Tn

(F−1
Tn φ)(−x)u(x) dx = ⟨u, ı ◦ F−1

Tn φ⟩.

Lo que genera el resultado deseado.

Al identificar Tn con [0, 1)n ⊂ Rn, se puede utilizar la definición de espacios de Sobolev euclideana
para el caso periodico.

Definición 5.5.4 (Espacios de Sobolev). Sea 1 ≤ p ≤ ∞ y sea k ∈ N0. El espacio de Sobolev
W k

p (Tn;X) consiste de todas las funciones f ∈ Lp(Tn;X) tales que para cualquier multi-índice
|α| ≤ k se tiene que ∂αf existe (en el sentido de distribuciones) y pertenecen a Lp(Tn;X). Para
tales funciones se define

∥f∥Wk
p
:=

∑
|α|≤k

∥∂αf∥pLp

1/p

,

para 1 ≤ p <∞. Para p = ∞ se define como

∥f∥Wk
∞

:= máx
|α|≤k

∥∂αf∥L∞ .

La demostración del hecho que los espacios de Sobolev son espacios de Banach es la realizada
para el Teorema 5.4.12. Además, se presenta el encaje de Sobolev para el caso toroidal, cuya prueba
es analoga a la del Teorema 5.4.13.

Teorema 5.5.5 (Encaje de Sobolev). Sea s ∈ N, tal que s > k + n/2. Entonces se tiene que el
espacio de Sobolev W s

2 (Tn;X) está contenido en el espacio de Hölder Ck(Tn;X) y la inclusión es
continua.

5.6. Espacios de Hardy en Rn y Tn

En este apartado se presentan las bases de la teoría de interpolación compleja que permite
extender propiedades de continuidad a espacios Lp con 1 < p <∞. Esto es posible gracias al clásico
resultado de Fefferman [19], que indica que el espacio de funciones de oscilación media acotada BMO
es el dual del espacio de Hardy H1.

Definición 5.6.1 (Espacio de Hardy H1). Para Ω = Rn,Tn. Se dice que f ∈ L1(Ω;X) se encuentra
en el espacio de Hardy H1(Ω;X) si existen f1, . . . , fn ∈ L1(Ω;X) que satisfacen

f̂j(ξ) =
iξj
|ξ|
f̂(ξ).

Se escribe fj =: Rjf , se le conoce como la transformada de Riesz, y se define la norma

∥f∥H1 := ∥f∥L1 +

n∑
j=1

∥Rjf∥L1 .
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Proposición 5.6.2 (Principio maximal). Sea u una función real de clase C2 en una región acotada
Ω ⊂ Rn y continua en Ω. Suponga que ∆u ≥ 0 en Ω y que u ≤ 0 en su frontera, entonces se tiene
que u ≤ 0 en todo Ω.

Demostración. Sin pérdida de generalidad, se puede suponer que ∇2u > 0, en caso contrario se
puede tomar u+ ε|x|2 − δ para ε, δ > 0 pequeños. Suponga que no vale u ≤ 0 para todo Ω, entonces
existe algún máximo positivo en algún x0 ∈ Ω. Como ∇u(x0) > 0, se tiene que al menos algún
∂2j u(x0) > 0. Además, como es máximo, se cumple ∂ju(x0) = 0. Usando el teorema de Taylor,

u(x0 + hej)− u(x0) =
1

2
h2∂2j u(x0) + o(h3).

Por lo que no es un máximo y se obtiene la contradicción.

Lema 5.6.3. Sea F := (u0, . . . , un), tal que satisface las ecuaciones de Cauchy-Riemann en Ω×R+,
es decir

n∑
j=0

∂xj
uj = 0, y ∂xj

uk = ∂xk
uj ,

con x0 = t. Suponga que |F | > 0 en algún punto y sea q ≥ (n − 1)/n, entonces se tiene que
∆(|F |q) ≥ 0. Particularmente, si q > (n− 1)/n,

∆(|F |q) ∼ |F |q−2|∇F |2.

Note que las imagenes de las uj pueden encontrarse en un espacio de Hilbert abstracto.

Demostración. Primero, note que por las ecuaciones de Cauchy-Riemann

n∑
j=0

∂2j uk = ∂k

n∑
j=0

∂juj = 0,

y que ∆F = 0. Por la regla de Leibniz se tiene que

∂2j |F |q = q(q − 2)|F |q−4(∂jF · F )2 + q|F |q−2[|∂jF ]2 + (∂2jF · F ).

Al sumar respecto a j, se obtiene que

∆|F |q = q|F |q−4
[
(q − 2)

∑
(∂jF · F )2 + |F |2

∑
|∂jF |2

]
.

Ahora, si q ≥ 2, por la desigualdad de Schwarz se tiene que
∑

(∂jF · F )2 ≤ |F |2
∑

|∂jF |2 y es
claro que ∆(|F |q) ≥ 0. Cuando q < 2, note que se puede descomponer a las imagenes en sus
componentes ortogonales y basta demostrarlo para un espacio de dimensión uno. Entonces, tome la
matriz M = (mjk) := ∂juk, que es simétrica y por lo tanto diagonalizable a una matriz con diagonal
λ0 ≥ . . . ≥ λn. Como la traza es invariante respecto a conjugados, se tiene que

λ0 = −
∑
j>0

λj ,

y por la desigualdad de Schwarz,
λ20 ≤ n

∑
j>0

λ2j .

Ahora, la norma operador y la norma Frobenius de la matriz también son invariantes ortogonales y
se obtiene que

∥M∥22 = λ20 ≤ n

n+ 1

∑
j

λ2j =
n

n+ 1
∥M∥2F .
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Esto implica que ∑
j

(∂jF · F )2 ≤ |F |2∥M∥2 ≤ |F |2∥M∥F ≤ n

n+ 1
|F |2

∑
j

|∂jF |2.

Lo que implica que ∆(|F |q). Para obtener la comparación final deseada, basta con notar que

|F |2
∑
j

|∂jF |2 = |F |2|∇F |2.

Lo que completa la prueba.

Ahora, se presenta un operador bastante útil: la integral de Poisson. Para una discusión exhaus-
tiva, vea Stein [33].

Definición 5.6.4. Se define el kernel de Poisson n-dimensional como

Pt(x) :=
cnt

(t2 + |x|2)(n+1)/2
,

donde cn es una constante para que su integral sea uno, y para f ∈ L1(Ω;X), con Ω = Rn,Tn, se
define su integral o extensión de Poisson como

(Pf)(x, t) := (Pt ∗ f)(x).

Este kernel tiene una propiedad muy útil relacionada con la transformada de Fourier. Puede ser
obtenida utilizando coordenadas polares y propiedades de las funciones de Besel, pero queda fuera
del alcance de este trabajo.

Proposición 5.6.5. El kernel de Poisson puede ser expresado como

FPt(ξ) = e−2πt|ξ|.

Además, tiene una relación interesante con el operador maximal de Hardy-Littlewood.

Teorema 5.6.6. Para f ∈ L1(Ω;X), con Ω = Rn,Tn, se tiene que supt>0 ∥Pf(x, t)∥X ≲ Mf(x).

Demostración. Note que∫
ε<|x−y|<R

t∥f(y)∥X dy

(t2 + |x− y|2)(n+1)/2
=

∫ R

ε

∫
Sn−1

Pt(r)∥f(x+ rz)∥Xrn−1 dσ(z) dr.

Al integrar por partes respecto a r, se obtiene que

Pt(r)

∫
B(x,r)

∥f(y)∥X dy

∣∣∣∣∣
R

r=ε

−
∫ R

ε

∫
B(x,r)

∥f(y)∥X dyP ′
t (r) dr,

al tomar la norma y al hacer ε→ 0 y R→ ∞, se puede estimar por

Mf(x)

∫ ∞

0

rnP ′
t (r) dr.

La prueba se completa al notar que P ′
t (r) ∼ ⟨r⟩−n−2.

Esto permite demostrar propiedades útiles de las extensiones de Poisson.

Teorema 5.6.7. Sea f ∈ L1(Ω;X), g ∈ L1(Ω;B(X,Y )), con Ω = Rn,Tn, entonces su integral de
Poisson cumple que

1. Pf es armónica,
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2. cumple la condición de frontera ĺımt→0(Pf)(x, t) = f(x), para casi todo x,

3. tiene propiedad de decaimiento ĺımt→∞(Pf)(x, t) = 0,

4. se tiene que ∫
Ω

f(x)g(x) dx = 2

∫ ∞

0

∫
Ω

t[∇(Pf)(x, t)][∇(Pg)(x, t)] dx dt.

Demostración. Para el primer inciso, se aprovecha su transformada de Fourier, para obtener que

∂t(Pφ)(x, t) = −F−1
{
2π|ξ|f̂(ξ)e−2πt|ξ|

}
∂xj (Pφ)(x, t) = F−1

{
2πiξj f̂(ξ)

}
.

Entonces, se tiene que

∇2(Pf)(x, t) = F−1
{
4π2|ξ|2f̂(ξ)e−2πt|ξ|

}
−

n∑
j=1

F−1
{
4π2ξ2j f̂(ξ)e

−2πt|ξ|
}
= 0.

Para el segundo y tercer inciso, se aprovecha que el operador supt>0 ∥Pf(x, t)∥X es débil (1, 1),
entonces el Teorema 5.1.20 implica que basta demostrarlo para funciones en S(Ω;X). En este caso
es consecuencia de la continuidad de la transformada de Fourier inversa

ĺım
t→0

(Pf)(x, t) = ĺım
t→0

F−1
{
f̂(ξ)e−2πt|ξ|

}
= F−1

{
f̂(ξ)

}
= f(x),

ĺım
t→∞

(Pf)(x, t) = ĺım
t→∞

F−1
{
f̂(ξ)e−2πt|ξ|

}
= 0.

Para el cuarto inciso, se procede descomponiendo∫ ∞

0

∫
Ω

t[∇(Pf)][∇(Pg)] dx dt =

∫ ∞

0

∫
Ω

t[∇x(Pf)][∇x(Pg)] + t∂t(Pf)∂t(Pg) dx dt =: I1 + I2.

Por integración por partes en I2, se tiene que

I2 =

∫
Ω

[t(Pf)∂t(Pg)]
∞
t=0 −

∫ ∞

0

(Pf)∂t(Pg) + t(Pf)∂2t (Pg) dt dx

= −
∫
Ω

∫ ∞

0

(Pf)∂t(Pg) + t(Pf)∂2t (Pg) dt dx

=

∫
Ω

∫ ∞

0

t(Pf)∇2
x(Pg)− (Pf)∂t(Pg) dt dx,

como Pg es armónica. Ahora, integrando por partes respecto a x, y luego respecto a t, se tiene que

I2 = −
∫ ∞

0

∫
Ω

t[∇x(Pf)][∇x(Pg)] + (Pf)∂t(Pg) dx dt

= −I1 −
∫ ∞

0

∫
Ω

(Pf)∂t(Pg) dx dt

Por la simetría de f y g, se puede reescribir como

I2 = −I1 −
1

2

∫
Ω

∫ ∞

0

[∂t(Pf)](Pg) + (Pf)[∂t(Pg)] dt dx

= −I1 −
1

2

∫
Ω

[(Pf)(Pg)]∞t=0 dx

= −I1 +
1

2

∫
Ω

fg dx.

Lo que concluye la prueba.
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Teorema 5.6.8. Para f ∈ Lp(Ω;X), con Ω = Rn,Tn, se tiene que ĺımt→0(Pt ∗ f) = f en norma
Lp

Demostración. Primero note que por una pequeña manipulación

Pt(y) =
cnt

−n

(1 + |y/t|2)(n+1)/2
= t−nP1(y/t)

Entonces, como
∫
Pt dy = 1, y por la desigualdad de Minkowski

∥Pt ∗ f − f∥Lp ≤
∫
Ω

∥f(· − y)− f(·)∥Lpt−nP1(y/t) dy =

∫
Ω

∥f(· − ty)− f(·)∥LpP1(y) dy → 0,

cuando t → 0. Esto se da como ∥f(· − ty) − f(·)∥Lp → 0, por el Teorema de diferenciación de
Lebesgue y se culmina argumentando convergencia dominada.

Ahora, se presenta un caso especial de una desigualdad de Carleson para variedades demostrada
por Hörmander [24].

Lema 5.6.9. Sea µ una medida positiva sobre Ω× R+, con Ω = Tn,Rn, tal que µ(T (x0, h)) ≲ hn,
donde T (x0, h) := {(x, t) : 0 < t < h, |x− x0| < h}. Entonces, se tiene que∫

Ω×R+

∥(Pf)(x, t)∥pX dµ ≲
∫
Ω

∥f(x)∥pX dx,

donde f ∈ Lp(Rn;X), y 1 < p <∞.

Demostración. Primero se nota que

∥Pf(x, t)∥X ≲
∫
Ω

t∥f(y)∥X dy

(t+ |x− y|)n+1
.

Cuando |x0 − y| < t, se tiene que∫
B(x0,t)

t∥f(y)∥X dy

(t+ |x− y|)n+1
≲ t−n

∫
B(x0,t)

∥f(y)∥X dy.

Además, cuando 2k−1t ≤ |x0 − y| ≤ 2kt, se obtiene que∫
{2k−1t≤|x0−y|≤2kt}

t∥f(y)∥X dy

(t+ |x− y|)n+1
≲ t−n2n(k−1)

∫
B(x0,2kt)

∥f(y)∥X dy

≲ t−n2n(k−1) (2kt)n

|B(x0, 2kt)|

∫
B(x0,2kt)

∥f(y)∥X dy.

Sumando todas las partes se obtiene que

∥(Pf)(x, t)∥X ≲ sup
s≥t

1

|B(x0, s)|

∫
B(x0,s)

∥f(y)∥X dy =: f̃(x, t).

Ahora, se define

E(ε,M) :=

{
(x′, t) : 0 < t < M,

∫
B(x′,t)

∥f∥X dx > r(ε+ tn)

}
.

Entonces, si existe una secuencia (xj , tj) ⊂ E(ε,M), tales que las bolas B(xj , tj) son disjuntas, se
tiene que ∑

j

r(ε+ tnj ) ≤
∑
j

∫
B(xj ,tj)

∥f∥X dx ≤
∫
Ω

∥f∥X dx.
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Por lo que dichas secuencias deben ser finitas. Entonces, sea M1 := sup{t : (x, t) ∈ E(ε,M)}
y se escoje (x1, t1) ∈ E(ε,M), tal que 3t1 ≥ M1. Si ya se escogieron j − 1 puntos, entonces se
define Mj como el supremo de los t tales que (x, t) ∈ E(ε,M) y que B(x, t) es disjunta a las bolas
B(x1, t1), . . . , B(xj−1, tj−1). Luego se escoje (xj , tj) tal que 3tj ≥ Mj . Este proceso termina luego
de un número de pasos. Entonces, para (x, t) ∈ E(ε,M), se tiene que B(x, t) intersecta a algún
B(xj , tj), particularmente, si j es el menor índice para el que ocurre, se tiene que t ≤ Mj ≤ 3tj , y
que B(x, t) ⊂ B(xj , 3tj). Ahora, se define

E′(ε,M) := {(x, t) : B(x, t) ⊂ B(x′, t′), (x′, t′) ∈ E(ε,M)} ⊂
⋃
j

{(x, t) : B(x, t) ⊂ B(xj , 3tj)}.

Por lo que se tiene que

µ(E′(ε,M)) ≤
∑
j

µ{(x, t) : B(x, t) ⊂ B(xj , 3tj)}

≤
∑
j

µ(T (xj , 3tj))

≲
∑
j

tnj ≤ 1

r

∫
Rn

∥f∥X dx.

Además, cuando ε→ 0, y M → ∞, se tiene que E′(ε,M) crece al conjunto {|f̃ | > r}. Finalmente, sea
χ la función indicadora del conjunto {∥f∥X < rσ}, para descomponer f = fχ+ f(1−χ) =: f1 + f2.
Como f̃1 ≤ rσ, entonces f̃2 ≥ r(1− σ) cuando f̃ > r. Por lo que se tiene que∫ ∞

0

rp−1µ{|f̃ | > r} dr ≲ 1

1− σ

∫ ∞

0

∫
∥f∥X>rσ

rp−2∥f∥X dx

=
1

1− σ

∫
Rn

∫
0<r<∥f∥X/σ

rp−2|f |dr dx

=
σ1−p

(1− σ)(p− 1)

∫
Ω

∥f∥pX dx∫
Ω×R+

|f̃ |p dµ ≲
∫
Ω

∥f∥pX dx,

donde σ < 1 puede ser escogido a conveniencia. Entonces, se concluye que∫
Ω×R+

∥Pf∥pX dµ ≲
∫
Ω×R+

|f̃ |p dµ ≲
∫
Ω

∥f∥pX dx.

Lo que concluye la prueba.

Teorema 5.6.10 (Definición equivalente del espacio de Hardy H1). Para toda f ∈ H1(Ω;X),
con Ω = Rn,Tn, existe una función F := (u0, . . . , un) tal que satisface las ecuaciones de Cauchy-
Riemann en Ω× R+. Además, ∫

Ω

sup
t>0

|F (x, t)| dx ≲ ∥f∥H1 ,

y ĺımt→0 u0(x, t) = f(x) casi en todas partes, y en norma L1.

Demostración. Definase a u0 := Pf , y uj := P (Rjf), que están bien definidas como Rjf ∈ L1.
Ahora, recuerde las derivadas de las integrales de Poisson

∂tP (Rjf)(x, t) = −F−1

{
2π|ξ|f̂(ξ) iξj

|ξ|
e−2πt|ξ|

}
,

∂xk
P (Rjf)(x, t) = F−1

{
2πiξkf̂(ξ)

iξj
|ξ|
e−2πt|ξ|

}
.

Entonces,
∑
∂juj = 0, y ∂juk = ∂kuj . Además, ĺımt→0 uj(x, t) = Rjf(x) casi en todas partes y en

norma L1. La comparación de normas es resultado de esta convergencia.
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Nota 5.6.11. En realidad la relación anterior es una doble implicación. Para cada F cuyas componen-
tes satsifagan las ecuaciones de Cauchy-Riemann, y que ∥F∥H1 <∞, se puede encontrar una función
f(x) := ĺımt→0 u0(x, t) en el espacio H1. Esto implica demostrar que los límites no-tangenciales de
estas funciones existen casi en todas partes y que las componentes uj son integrales de Poisson de
medidas finitas. Entonces, se tiene una definición alternativa para el espacio de Hardy H1(Ω;X) con
normas equivalentes. Más aún, es posible definir mediante estas funciones F , los espacios Hp para
p ≤ 1, mediante la cuasi-norma

∥F∥Hp := sup
t>0

(∫
Ω

|F (x, t)|p dx
)1/p

.

Para un tratamiento más detallado, vea Stein [33].

Definición 5.6.12 (Espacio de funciones de oscilación media acotada BMO). Para f ∈ L1
loc(Ω;X),

se define el operador p-maximal sharp como

M#
p f(x) := sup

Q∋x

(
1

|Q|

∫
Q

∥f(y)− fQ∥pX dy

)1/p

,

donde fQ es el valor promedio de f sobre el cubo Q. Cuando p = 1, se suele denotar f#. Se dice
que f pertenece al espacio de funciones de oscilación media acotada BMO(Ω;X) si se tiene que
f# ∈ L∞. En ese caso se define la norma

∥f∥BMO := ∥f#∥L∞ .

En realidad, se toma el cociente respecto a funciones constantes para que la definición de norma sea
adecuada.

Ahora, se presenta una norma alternativa que no requiere del cálculo del valor promedio fQ.

Proposición 5.6.13 (Versión alternativa del operador maximal sharp). Para f ∈ L1
loc(Ω;X), se

tiene que
1

2
M#

p f(x) ≤ sup
Q∋x

ı́nf
b∈X

(
1

|Q|

∫
Q

∥f(x)− b∥pX dx

)1/p

≤ M#
p f(x).

Demostración. Para la cota superior basta tomar b = fQ. Para la cota inferior, se tiene que(∫
Q

∥f(x)− fQ∥pX dx

)1/p

≤
(∫

Q

∥f(x)− b∥pX dx

)1/p

+

(∫
Q

∥b− fQ∥pX dx

)1/p

=

(∫
Q

∥f(x)− b∥pX dx

)1/p

+ |Q|1/p∥b− fQ∥X

≤ 2

(∫
Q

∥f(x)− b∥pX dx

)1/p

.

Lo que completa la prueba.

Nota 5.6.14. El resultado anterior, permite entonces utilizar la definición equivalente

M#
p f(x) := sup

Q∋x
ı́nf
b∈X

(
1

|Q|

∫
Q

∥f(x)− b∥pX dx

)1/p

El operador maximal sharp, tiene una relación interesante con el operador maximal de Hardy-
Littlewood.

Teorema 5.6.15. Para f ∈ L1
loc(Ω;X), se tiene que f# ≤ 2Mf .



CAPÍTULO 5. PRELIMINARES 40

Demostración. Basta con ver que

1

|Q|

∫
Q

∥f − fQ∥X dx ≤ 1

|Q|

∫
Q

∥f∥X dx+ ∥fQ∥X ≤ 2(∥f∥X)Q.

El resultado se obtien tomando el supremo.

El resultado converso se tiene en norma y se debe a Fefferman y Stein [21].

Teorema 5.6.16 (Fefferman-Stein). Sea f ∈ Lp0(Ω;X), y sea 1 < p < ∞, donde 1 ≤ p0 ≤ p.
Suponga que f# ∈ Lp(Ω), entonces se tiene que

∥Mf∥Lp ≤ Cp∥f#∥Lp ,

donde M es el operador maximal de Hardy-Littlewood, y Cp solo depende de p.

Demostración. Se aplica la descomposición de Calderón-Zygmund (vea el Teorema 5.1.27) para
obtener una suseción de cubos diádicos {Qλ

j } tales que ∥f(x)∥X ≤ λ, para x /∈
⋃

j Q
λ
j , y que

λ <
1

|Qλ
j |

∫
Qλ

j

∥f(x)∥X dx ≤ 2nλ.

Ahora, se puede ver que si ag(λ) := |{|g| > λ}| es la función densidad, entonces af (λ) = |Qλ| :=∣∣∣⋃j Q
λ
j

∣∣∣.Entonces, se busca probar

af (λ) ≤ af#(λ/A) +
2

A
af (2

−n−1λ), (5.6.1)

Para ello, se fija Q0 = Qλ2−n−1

j . Si se tiene que Q0 ⊂ {f# > λ/A}, entonces, es trivial que∑
Qλ

j ⊂Q0

|Qλ
j | ≤ |{f# > λ/A} ∩Q0|.

En caso contrario, por definición se tiene que

1

|Q0|

∫
Q0

∥f − fQ0∥X dx ≤ λ

A
.

Por otra parte, ∥fQ0∥X ≤ 2n(2−n−1λ) = λ/2, y (∥f∥X)Qλ
j
≤ λ. Entonces, se tiene que∫

Qλ
j

∥f − fQ0
∥X dx ≥ λ

2
|Qλ

j |,

donde Qλ
j ⊂ Q0. Entonces, se tiene que ∑

Qλ
j ⊂Q0

|Qλ
j | ≤

2

A
|Q0|.

Se obtiene (5.6.1) al sumar sobre todos los cubos Q0. Ahora, note que si x ∈ Qλ
j , entonces

Mf(x) ≥ 1

|Qλ
j |

∫
Qλ

j

∥f∥X dx > λ,

y af (λ) ≤ aMf (λ). Además, se define 2Qλ
j como el cubo concentrico a Qλ

j , tal que ℓ(2Qλ
j ) = 2ℓ(Qλ

j ),
y se fija x /∈

⋃
2Qλ

j . Sea Q cualquier cubo que contenga a x, entonces∫
Q

∥f(y)∥X dy =

∫
Q∩Qλ

∥f(y)∥X dy +

∫
Q∩(Ω\Qλ)

∥f(y)∥X dy =: I1 + I2.
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Note que I2 ≤ λ|Q|. Para I1, vea que si Q ∩Qλ
j es no vacío, entonces Qλ

j ⊂ 4Q, dado que Q ̸⊂ 2Qλ
j

implica ℓ(Q) > ℓ(Qλ
j ). Por lo que

I1 ≤
∑

Qλ
j ⊂4Q

∫
Qλ

j

∥f(y)∥X dy ≤
∑

Qλ
j ⊂4Q

2nλ|Qλ
j | ≤ 2n4nλ|Q|.

Entonces, se puede concluir que

2−naMf [(1 + 2n4n)λ] ≤ af (λ) ≤ aMf (λ). (5.6.2)

Por otra parte, se define

IN := p

∫ N

0

λp−1af (λ) dλ ≤ p

∫ N

0

λp−1aMf (λ) dλ.

También, se sabe que si p0 > 1, entonces IN ≤ ∥Mf∥Lp0 , y que si p0 = 1, entonces aMf (λ) ≲ λ−1

(vea el Teorema 5.1.29). En general, se tiene que IN <∞ como f ∈ Lp0 . Por (5.6.1) se tiene que

IN ≤ p

∫ N

0

λp−1af#(λ/A) dλ+
2

A
p

∫ N

0

λp−1af (2
−n−1λ) dλ

≤ App

∫ N

0

λp−1af#(λ) dλ+
2

A
p2(n+1)p

∫ N2−n−1

0

λp−1af (λ) dλ

≤ Ap∥f#∥Lp +
2

A
2(n+1)pIN .

Por lo que, si se escoge A = 4 · 2(n+1)p, se tiene que IN ≤ 4 · 2(n+1)p∥f#∥Lp . Finalmente, se concluye
que

∥Mf∥Lp = p

∫ N

0

λp−1aMf (λ) dλ

≤ 2n(1 + 2n4n)−pp

∫ ∞

0

λp−1af (λ) dλ

= 2n(1 + 2n4n)−p ĺım
N→∞

IN ≤ Cp∥f#∥Lp ,

con Cp = 2n(1+2n4n)−p4 ·2(n+1)p. Se puede ver que la constante solo depende de n y p, concluyendo
la prueba.

A continuación se presenta el resultado clásico de Fefferman [19], y la demostración se guía de la
presentada en su trabajo con Stein [21].

Teorema 5.6.17 (Fefferman). Suponga X ′ satisface la propiedad de Radon-Nikodym. Entonces, el
dual de H1(Ω;X) es BMO(Ω;X ′), con Ω = Rn,Tn. Esto puede entenderse de la siguiente manera

1. Para φ ∈ BMO, el funcional f 7→
∫
Ω
φ(x)f(x) dx es acotado en H1.

2. Para cualquier funcional continuo en H1, se comporta como el funcional en (1) para una única
función φ ∈ BMO.

Para ello, se enuncia este teorema auxiliar.

Teorema 5.6.18. Para Ω = Rn,Tn, los siguientes enunciados son equivalentes

1. φ pertenece a BMO(Ω;X),

2. φ = φ0 +
∑n

j=1Rjφj, donde φ0, . . . , φn ∈ L∞(Ω;X),
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3. se tiene que ∫
Ω

∥φ(x)∥X dx

1 + |x|n+1
<∞,

y que

sup
x0∈Ω

∫
T (x0,h)

t∥∇(Pφ)(x, t)∥2X dx dt ≲ hn,

donde 0 < h <∞, T (x0, h) := {(x, t) : 0 < t < h, |x− x0| < h}, y Pφ su integral de Poisson.

Los dos teoremas anteriores se demuestran en conjunto de la siguiente manera: Teorema 5.6.17
⇒ Teorema 5.6.18(2) ⇒ (1) ⇒ (3) ⇒ Teorema 5.6.17.

Demostración. (Teorema 5.6.17 ⇒ 2) Sea B :=
⊕n+1

L1(X) el espacio de Banach con la norma dada
por ∥(f0, . . . , fn)∥ :=

∑
∥fj∥L1 . Entonces, sea S el subespacio en el que fj = Rjf0, que claramente

es cerrado y que es isométrico a H1 mediante el mapa f0 7→ (f0, R1f0, . . . , Rnf0). Entonces, por el
Teorema Hahn-Banach, cada funcional continuo definido en H1, puede ser extendido a un funcional
continuo en B, cuyo dual es

⊕n+1
L∞(X ′). Es decir, para cada funcional T continuo en H1, existen

φ0, . . . , φn ∈ L∞(X ′), tales que

T (f) =

∫
Ω

φ0f dx+

n∑
j=1

∫
Ω

φj(Rjf) dx.

Por otra parte, se tiene que por la transformada de Fourier cuando Ω = Tn,

∫
Tn

φj(Rjf) dx =

∫
Tn

φj

∑
ξ∈Zn

∫
Tn

iξj
|ξ|
f(y)e2πi(x−y)·ξ dy

 dx

=

∫
Tn

∑
ξ∈Zn

∫
Tn

iξj
|ξ|
φj(x)e

2πi(x−y)·ξ dx

 f(y) dy
= −

∫
Tn

Rjφj(y)f(y) dy.

El caso Ω = Rn es análogo. Por lo que cada funcional continuo T se puede escribir como

T (f) =

∫
Ω

φ0 −
n∑

j=1

Rjφj

 f dx.
(2 ⇒ 1) En vista del inciso anterior, basta con demostrar que para cualquier φ ∈ L∞, se tiene que
Rjφ ∈ BMO. Para un cubo Q de diametro σ, sea χ, la función indicadora para puntos |x−xQ| ≤ 2σ,
para descomponer

φ = φχ+ φ(1− χ) =: φ1 + φ2.

Entonces, se tiene que R̂jφ1(ξ) = iξjφ̂1(ξ)/|ξ| y por la desigualdad de Hölder e identidad de Plan-
cherel

1

|Q|

∫
Q

∥Rjφ1∥X dx ≤ |Q|−1/2∥Rjφ1∥L2 ≤ |Q|−1/2∥φ̂1∥L2 ≲ ∥φ∥L∞ . (5.6.3)

Por otra parte, se puede verificar que la transformada de Riesz, equivale a la siguiente convolución

(Rjf)(x) = (Kj ∗ f)(x) :=
∫
Ω

xj − yj
|x− y|n+1

f(y) dy.

Ahora, por el Teorema del valor medio, se tiene que

|Kj(x− y)−Kj(xQ − y)| ≤ |x− xQ| sup
z

|∇Kj(z)|,
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donde z se encuentra entre x− y, y xQ − y. Además, se tiene que |∇Kj(z)| ≲ |z|n+1. Ahora, para y
en el soporte de φ2, y x ∈ Q, se tiene que

|y − x| ≥ |y − xQ| − |xQ − x| ≥ |xQ − x|.

Por lo que |z| ≳ |xQ − y| y se tiene que

∥(Rjφ2)(x)− (Rjφ2)(xQ)∥X ≲ σ

∫
|xQ−y|>2σ

∥φ∥L∞

|xQ − y|n+1
dy ≲ ∥φ∥L∞ . (5.6.4)

Escogiendo b = (Rjφ2)(xQ) en la norma equivalente en BMO se tiene que

∥Rjφ∥BMO ≲ sup
Q

1

|Q|

∫
Q

∥(Rjφ2)(x)− (Rjφ2)(xQ)∥X + ∥Rjφ1(x)∥X dx ≲ ∥φ∥L∞ .

(1 ⇒ 3) Sea Q el cubo de lado uno centrado en el origen, y Qk el cubo de lado 2k con el mismo
centro. Entonces, se tiene que∥∥∥∥∥

∫
Qk−1

[φ(x)− φQk
] dx

∥∥∥∥∥
X

≤
∫
Qk

∥φ(x)− φQk
∥X dx ≤ 2nk∥φ∥BMO.

Por lo que ∥φQk−1
− φQk

∥X ≤ 2n∥φ∥BMO, y se tiene que∫
Qk

∥φ(x)− φQ∥X dx ≤ 2nk[1 + 2nk]∥φ∥BMO.

Particularmente, se obtiene que∫
Qk+1\Qk

∥φ(x)− φQ∥X
1 + |x|n+1

dx ≲
∫
Qk+1\Qk

∥φ(x)− φQ∥X
1 + 2k(n+1)

dx

≤ 2nk+n[1 + 2n(k + 1)]

1 + 2kn+k
∥φ∥BMO.

Por lo que sumar todas las expresiones de este estilo resulta en∫
Ω

∥φ(x)− φQ∥X
1 + |x|n+1

dx ≲ ∥φ∥BMO <∞.

Para el segundo estimativo, fije x0 = 0, y sea Q el cubo centrado en el origen, de lado 4h. Sea χ
su función característica y χ̃ la de su complemento. Entonces, se descompone a φ de la siguiente
manera

φ = φQ + (φ− φQ)χ+ (φ− φQ)χ̃ =: φ1 + φ2 + φ3.

Primero, φ1 es constante y no aporta a la norma del gradiente. Por la identidad de Plancherel se
obtiene que ∫

T (0,h)

t∥∇(Pφ2)(x, t)∥2X dx dt ≤
∫ ∞

0

∫
Ω

t∥∇(Pφ2)(x, t)∥2X dx dt

=

∫ ∞

0

8
∥∥∥φ̂2(ξ)π|ξ|te−2πt|ξ|

∥∥∥2
L2

dt

=
1

2
∥φ̂2∥2L2

=

∫
Q

∥φ(x)− φQ∥2X dx ≲ hn∥φ∥2BMO,
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por los cálculos realizados en el inciso anterior. Por otra parte, sigue que

∥∇(Pφ3)(x, t)∥X ≤
∫
Ω

|∇Pt(x− y)|∥φ3(y)∥X dy

≲
∫
Ω\Q

[
1

t+ |x− y|

]n+1

∥φ(y)− φQ∥X dy.

Pero, para (x, t) ∈ T (0, h), y ∈ suppφ3 se tiene que[
1

t+ |x− y|

]n+1

≲
1

hn+1 + |y|n+1
,

y que ∥∇(Pφ3)(x, t)∥X ≲ h−1∥φ∥BMO. Finalmente se concluye que en realidad

sup
x0∈Ω

∫
T (x0,h)

t∥∇(Pφ)(x, t)∥2X dx dt ≲ hn∥φ∥BMO.

(3 ⇒ Teorema 5.6.17) En vista del Teorema 5.6.7, basta demostrar que para f ∈ H1(X) apropiado
se tiene que ∣∣∣∣∫ ∞

0

∫
Ω

t[∇(Pφ)][∇(Pf)] dx dt

∣∣∣∣ ≲ ∥f∥H1 .

Además, en vista del Teorema 5.6.10 se tiene que existe F = (u0, . . . , un), que satisfacen las ecua-
ciones de Cauchy-Riemann generalizadas, tal que u0(x, 0) = f(x), y que gracias a un argumento de
densidad, decae rápidamente en el infinito. También, se puede requerir sin pérdida de generalidad
que |F | > 0, y que ∆(|F |) = O(|x| + t + 1)−n−δ en su dominio. Entonces, el lado izquierdo de la
expresión anterior puede ser acotado por∫ ∞

0

∫
Ω

t∥∇(Pφ)∥X′∥∇(Pf)∥X dx dt ≤
∫ ∞

0

∫
Ω

∥∇(Pφ)∥X′ |∇F |dx dt

≤
(∫ ∞

0

∫
Ω

t∥∇(Pφ)∥2X′ |F |dx dt
)1/2(∫ ∞

0

∫
Ω

t|F |−1|∇F |2 dx dt
)1/2

Ahora, por el Lema 5.6.3 se tiene que∫ ∞

0

∫
Ω

t|F |−1|∇F |2 dx dt ≲
∫ ∞

0

∫
Ω

t∆(|F (x, t)|) dx dt

=

∫
Ω

|F (x, 0)| dx ≲ ∥f∥H1 ,

por el Teorema de Green. Por otra parte, se define g(x) := |F (x, 0)|q, con q = (n− 1)/n. Entonces,
por el Lema 5.6.3, se tiene que ∆(|F |q − Pg) ≥ 0 y como Pg = |F |q en la frontera, el principio
maximal implica |F (x, t)| ≤ [(Pg)(x, t)]p, donde p = 1/q > 1. En particular

∥g∥pLp ≤
∫
Ω

|F (x, 0)|dx ≲ ∥f∥H1 .

Entonces, el término restante puede ser estimado utilizando el Lema 5.6.9 con dµ := t∥∇(Pφ)∥2X′ dx dt.
En efecto,∫ ∞

0

∫
Ω

t∥∇(Pφ)∥2X′ |F |dx dt ≤
∫ ∞

0

∫
Ω

t∥∇(Pφ)∥2X′ |Pg|p dx dt ≲ ∥g∥pLp ≲ ∥f∥H1 .

Lo que concluye la prueba.
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Nota 5.6.19. En esta demostración se demostró en (1 ⇒ 3) una propiedad de la conocidafunción-g
de Littlewood-Paley, que se define como

g(f)(x) :=

(∫ ∞

0

∥∇Pf(x, t)∥2X dt

)1/2

.

En particular, se demostro que ∥g∥L2 ∼ ∥f∥L2 .

Para concluir, se presenta una definición alternativa del espacio de Hardy H1. Aquí, se adapta
el caso p de la prueba general presentada por Stein [34].

Definición 5.6.20 (Espacios de Hardy atómicos Hp,q
at ). Sea p ≤ 1. Se le llama (p, q)-átomo a una

función a : Ω → X, con Ω = Rn,Tn, soportada en una bola B, que cumple que

∥a∥Lq ≤ |B|1/q−1/p, y
∫
Ω

xβa(x) dx = 0,

con 0 ≤ |β| ≤ n(1/p−1). Además, se dice que f ∈ Hp,q
at (Ω;X) si existe una descomposición atómica,

es decir una sucesión de átomos {aj} que satisfaga

f =
∑
j

λjaj ,
∑
j

|λj |p <∞.

También se define la norma

∥f∥Hp,q
at

:= ı́nf


∑

j

|λj |p
1/p

: f =
∑
j

λjaj


Teorema 5.6.21. Se tiene que H1(Ω;X) = H1,∞

at (Ω;X), con equivalencia de norma.

Demostración. (H1 ↪→ H1,∞
at ) Para esta dirección, basta con ver que los átomos tienen norma H1

uniforme. Primero, por (5.6.3), se tiene que para un (1,∞)-átomo a relacionado a una bola B(z, σ)∫
B(z,2σ)

∥Rja(x)∥X dx ≲ |B(z, σ)|∥a∥L∞ ≤ C.

Ahora, por (5.6.4), se tiene que para |x− z| > 2σ,∫
Ω\B(z,2σ)

|Kj(y − x)−Kj(z − x)| dx ≤ C.

Además, por la propiedad de cancelación∫
Ω\B(z,2σ)

∥Rja∥X dx =

∫
Ω\B(z,2σ)

∥∥∥∥∥
∫
B(z,σ)

a(y) [Kj(x− y)−Kj(x− z)] dy

∥∥∥∥∥
X

dx

≤
∫
B(z,σ)

∥a(y)∥X
∫
Ω\B(z,2σ)

|Kj(x− y)−Kj(x− z)| dx dy

≤ C

∫
B(z,σ)

∥a(y)∥X dy ≤ C.

En conclusión ∥Rja∥L1 ≤ C, y esto permite asegurar la convergencia en H1 de la serie de átomos,
y que para cualquier ε > 0

∥f∥H1 ≤
∑
j

|λj |∥aj∥H1 ≲
∑
j

|λj | ≤ ∥f∥H1
at
+ ε.
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(H1,∞
at ↪→ H1) Para la construcción de los átomos, se aplica la descomposición de Calderón-Zygmund

a Mf := ∥f∥X +
∑

∥Rjf∥X , al nivel λ = 2m, para obtener una suseción de cubos diádicos {Qm
k }

tales que

2m <
1

|Qm
k |

∫
Qm

k

Mf dx ≤ 2n+m,

|Qm| :=

∣∣∣∣∣⋃
k

Qm
k

∣∣∣∣∣ ≲ 2−m∥Mf∥L1 = 2−m∥f∥H1 ,

y si x /∈ Qm, entonces Mf(x) ≤ 2m casi en todas partes. Entonces, se definen

gm := f(1− χQm) +
∑
k

f 1
2Q

m
k
χ 1

2Q
m
k
, bm :=

∑
k

bmk :=
∑
k

(f − f 1
2Q

m
k
)χ 1

2Q
m
k
.

Por lo que, para x ∈ Qm
k , se tiene que

∥Rjb
m
k ∥X ≤

∥∥∥∥∥
∫
Qm

k

Kj(x− y)f(y) dy

∥∥∥∥∥
X

+

∥∥∥∥∥
∫
Qm

k

Kj(x− y)f 1
2Q

m
k
dy

∥∥∥∥∥
X

≤ ∥Rjf∥X +

∥∥∥∥∥
∫
Qm

k

Kj(x− y)
2n

|Qm
k |

∫
1
2Q

m
k

f(x) dx dy

∥∥∥∥∥
X

≤ ∥Rjf∥X +
2n

|Qm
k |

∫
Qm

k

∥Rjf(y)∥X dy

≲ ∥Rjf∥X + (∥Rjf∥X)Qm
k
| ≲ ∥Rjf∥X + 2n+m ≲ Mf.

Ahora, cuando x /∈ Qm
k , se aprovecha el hecho que

∫
bmk = 0, para tener que

Rjb
m
k =

∫
Ω

bmk (y)[Kj(x− y)−Kj(x− xQm
k
)] dy.

Aquí, xQm
k

es el centro del cubo. Por un argumento similar al de (5.6.4), se tiene que

|Rjb
m
k | ≲

∫
Qm

k

ℓ(Qm
k )∥f(y)− f 1

2Q
m
k
∥X

|x− xQm
k
|n+1

dy ≤ 2(∥f∥X) 1
2Q

m
k

ℓ(Qm
k )

|x− xQm
k
|n+1

|Qm
k | ≲ 2n+m ℓ(Qm

k )n+1

|x− xQm
k
|n+1

.

Por lo que ∫
Ω

Mbmk dx =

∫
Qm

k

Mbmk dx+

∫
Ω\Qm

k

Mbmk dx

≤
∫
Qm

k

Mf dx+

∫
|x−xQm

k
|>ℓ(Qm

k )

2m
ℓ(Qm

k )n+1

|x− xQm
k
|n+1

dx

≲
∫
Qm

k

Mf dx+ 2mℓ(Qm
k )n

≲
∫
Qm

k

Mf dx+ 2m|Qm
k | ≲

∫
Qm

k

Mf dx.

Por lo que se tiene que

∥bm∥H1 ≤
∑
k

∫
Ω

Mbmk dx ≤
∑
k

∫
Qm

k

Mf dx ≤
∫
Qm

Mf dx→ 0,

cuando se hace m→ ∞, dado que Qm = {Mf > 2m}. Equivalentemente, ∥f−gm∥H1 → 0. Además,
como gm → 0 cuando m→ −∞, se tiene que

f =
∑
m∈Z

(gm+1 − gm) =
∑
m∈Z

∑
k

(gm+1 − gm)χQm
k
,
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como gm+1 − gm = bm − bm+1, que se encuentra soportado en Qm. Ahora, se define Bm
k como la

menor bola que contiene al cubo Qm
k , y como ∥gm+1 − gm∥X ≤ C2m, se definen

λmk := C2m|Bm
k |, amk := (λmk )−1

(
bmk −

∑
ℓ

bm+1
ℓ

)
,

donde los ℓ son aquellos tales que Qm+1
ℓ ⊂ Qm

k . Esto está bien definido dado que son cubos diádicos,
y que

∑
k λ

m
k a

m
k = gm+1 − gm. Asimismo, se tiene que ∥amk ∥L∞ ≤ |Bm

k |−1. Se puede ver que estos
átomos también cumplen la propiedad de cancelación∫

Ω

amk dx =

∫
Ω

bmk dx−
∑
ℓ

∫
Ω

bm+1
ℓ dx = 0.

Además, se tiene que los coeficientes cumplen que∑
k,m

|λmk | ≲
∑
k,m

2m|Bm
k | ≲

∑
m

2m|{Mf > 2m}| ≲ ∥Mf∥L1 = ∥f∥H1 .

Por lo que, se obtiene el resultado deseado.

Teorema 5.6.22. Se tiene que Hp,q
at (Ω;X) = Hp,r

at (Ω;X), incluso cuando q ̸= r.

Demostración. Sin pérdida de generalidad suponga que q < r, entonces para cualquier (p, r)-átomo
a, se tiene que por la desigualdad de Hölder

∥a∥Lq =

(∫
B

∥a∥qX dx

)1/q

≤ ∥∥a∥qX∥1/q
Lr/q ∥χB∥1/qLr/(r−q) = ∥a∥Lr |B|1/q−1/r ≤ |B|1/q−1/p.

Por lo mismo, se tiene que Hp,∞ ↪→ Hp,r ↪→ Hp,q ↪→ Hp,1, y basta demostrar que Hp,1 ↪→ Hp,∞. En-
tonces, tome un (p, 1)-átomo a, soportado en B y apliquele la descomposición de Calderón-Zigmund
a ∥a∥X , en los niveles λ = 2m, para obtener, como en la prueba anterior, sucesiones de cubos {Qm

k },
y de funciones

gm := a+
∑
k

cmk χQm
k
, bm =

∑
k

bmk :=
∑
k

[a− cmk ]χQm
k
,

donde las cmk son funciones tales que para la bola Bm
k = B(z, σ), se tiene que

cmk :=
∑
|β|≤s

cmkβ
(x− z)β

β!
χBm

k
,

donde s = n(1/p− 1) y los cmkβ se escogen de tal manera que satisfaga las condiciones de momentos.
Es decir

Imkα :=

∫
Bm

k

(x− z)αa dx =
∑
|β|≤s

cmkβ

∫
Bm

k

(x− z)α
(x− z)β

β!
dx,

para cualquier |α| ≤ s. Estas integrales se pueden estimar como

∥Imkα∥X ≤

∥∥∥∥∥
∫
Bm

k

σ|α|a dx

∥∥∥∥∥
X

≤ 2n2mσ|α||Bm
k |.

Ahora, tome la matriz de de momentos para la bola Bm
k ,

M(Bm
k )αβ :=

∫
Bm

k

(x− z)α
(x− z)β

β!
dx,
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Se puede ver que esta puede expresarse como σ|α+β|+nMαβ , en terminos de la matriz de momentos de
la bola unitaria. En particular, como DσMDσσ

n, donde Dσ es diagonal con entradas (Dσ)αα = σ|α|.
Entonces, al invertir, se obtiene que

M(Bm
k )−1 = D1/σM

−1D1/σσ
−n.

y se pueden estimar como

|(M(Bm
k )−1)αβ | ≤ |(M−1)αβ |σ−|α+β|−n ≤ Cnsσ

−|α+β|−n.

Por lo que
∥cmkβ∥X ≤

∑
|α|≤s

Cnsσ
−|α+β|−n · 3 · 2mσ|α||Bm

k | ≤ C ′
ns2

mσ−|β|.

Esto implica que ∥bmk ∥L∞ ≤ C ′′
ns2

m. Por lo que se definen

ãmk := bmk −
∑
ℓ

bm+1
ℓ ,

donde los ℓ son tales que Qm+1
ℓ ⊂ Qm

k , los cuales están bien definidos dado que son diádicos. Además,
se tiene que ∑

k

ãmk = bm − bm+1 = gm+1 − gm.

Entonces, se tiene que ∥ãmk ∥L∞ ≤ ∥gm+1 − gm∥L∞ ≤ C2m y se pueden definir los átomos como

λmk := C2m|Bm
k |1/p, amk := (λmk )−1ãmk .

Se tiene que los coeficientes cumplen∑
k,m

|λmk |p ≲
∑
k,m

2mp|Qm
k | =

∑
m

2mp|{∥a∥X > 2m}| ≲
∫
B

∥a∥pX dx.

Ahora, como p ≤ 1, se tiene que por la desigualdad de Jensen∫
B

∥a∥pX dx = |B|
∫
B

∥a∥pX
dx

|B|
≤ |B|

(∫
B

∥a∥X
dx

|B|

)p

≤ 1.

Lo que completa la prueba.

Nota 5.6.23. Por lo tanto, se suele definir el espacio Hp
at(Ω;X) como el espacio Hp,q(Ω;X), para

todo 1 ≤ q ≤ ∞. Generalmente se denotan como el espacio Hp, que también puede ser definido en
términos de operadores maximales, vea Stein [34].

5.7. Interpolación entre espacios
Anteriormente, se han aprovechado resultados de interpolación, que permiten demostrar las pro-

piedades para un par de espacios y como consecuencia obtener los resultados para los espacios
’intermedios’. Ahora, se considera un caso muy importante para el análisis armónico y se presenta
la teoría de interpolación compleja.

Definición 5.7.1 (Parejas de espacios). Sean A0, y A1 espacios de Banach. Se dice que estos
son compatibles si existe un espacio topológico de Hausdorff que los contenga como subespacios,
y se denota a la pareja de espacios como A := (A0, A1). Ahora, se define el espacio intersección
∆(A) := A0 ∩A1, con la norma

∥a∥∆(A) := máx{∥a∥A0
, ∥a∥A1

}.
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Además, se define el espacio suma Σ(A) := A0 +A1, con la norma

∥a∥Σ(A) := ı́nf
a=a0+a1

(∥a0∥A0
+ ∥a1∥A1

).

No es complicado demostrar que estos espacios también son de Banach. Por otra parte, se define
un mapa entre parejas T : A → B como un mapa lineal continuo T : Σ(A) → Σ(B), tales que sus
restricciones T |Aj

: Aj → Bj son mapas lineales continuos para j = 0, 1. En consecuencia se tiene
que

∥T∥∆(A),∆(B) ≤ máx{∥T∥A0,B0 , ∥T∥A1,B1},

∥T∥Σ(A),Σ(B) ≤ máx{∥T∥A0,B0
, ∥T∥A1,B1

}.

Definición 5.7.2 (Espacios intermedios y de interpolación). Sea A := (A0, A1) una pareja com-
patible, entonces A es un espacio intermedio respecto a A si ∆(A) ⊂ A ⊂ Σ(A). Además, se dice
que dos espacios intermedios A,B respecto a A,B respectivamente, son espacio de interpolación, si
T : A→ B implica T : A→ B. Si además, se tiene que

∥T∥A,B ≤ Cmáx{∥T∥A0,B0
, ∥T∥A1,B1

},

se dice que son espacios de interpolación uniformes, y cuando C = 1 se dice que son espacios de
interpolación exacta. Sea 0 ≤ θ ≤ 1, entonces se dice que A,B son de exponente θ si

∥T∥A,B ≤ C∥T∥1−θ
A0,B0

∥T∥θA1,B1
.

Además, si C = 1, se dice que son de exponente exacto.

Nota 5.7.3. Se puede ver que lo que en realidad se definió es una categoría cuyos objetos son las
parejas compatibles y sus morfismos los mapas definidos anteriormente. A continuación se definen
los functores de interpolación.

Definición 5.7.4 (Functor de interpolación). Se dice que F es un functor de interpolación si para
parejas A,B, entonces F (A), F (B) son espacios de interpolación. Además, se tiene que F (T ) =
T |F (A) para T : A→ B.

Ahora, se presentan las particularidades del método de interpolación compleja.

Definición 5.7.5. Dada una pareja A de espacios de Banach, se define a F(A) como el conjunto de
funciones f : C → Σ(A), tales que son continuas y acotadas en la banda S := {z ∈ C : 0 ≤ Rez ≤ 1},
y que son analíticas en el interior de la misma. Además, se requiere que el mapa t 7→ f(j + it) sea
continuo en Aj y se desvanezcan cuando t→ ∞, para j = 1, 0. Además, se define la norma

∥f∥F := máx{sup ∥f(it)∥A0
, sup ∥f(1 + it)∥A1

}.

Se puede verificar que es un espacio de Banach. Por otra parte, se define el functor de interpolación
A[θ] = Cθ(A) como el espacio de vectores a ∈ Σ(A), tales que a = f(θ) para algún f ∈ F(A).
Además, se define la norma

∥a∥[θ] := ı́nf{∥f∥F : f(θ) = a}.

Teorema 5.7.6. El espacio A[θ] es un espacio de Banach y es un espacio de interpolación the
exponente exacto θ.

Demostración. Es claro que el mapa f 7→ f(θ) es continuo desde F(A) hacia Σ(A), dado que
∥f(θ)∥Σ ≤ ∥f∥F. El kernel de este mapa es el conjunto Nθ := {f : f(θ) = 0}. Entonces, A[θ] es
isomorfo e isométrico al cociente F/Nθ. Además, como Nθ es cerrado, se tiene que es un espacio de
Banach. Ahora, se tiene que ∥a∥Σ = ∥f(θ)∥Σ ≤ ∥f∥F, que implica que A[θ] ⊂ Σ(A). Asimismo, sea

f(z) := e(z−θ)2a,
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que implica que ∆(A) ⊂ A[θ]. Entonces, es un espacio intermedio. Por otra parte, suponga Tj mapea
a Aj en Bj con norma Mj . Dado a ∈ A[θ], y dado ε > 0, existe f ∈ F(A) tal que f(θ) = a y que
∥f∥F ≤ ∥a∥[θ] + ε. Entonces, sea

g(z) :=Mz−1
0 M−z

1 T (f(z)),

que pertenece a F(B). Además, ∥g∥F ≤ ∥f∥F, pero g(θ) =Mθ−1
0 M−θ

0 T (a) y se concluye que

∥Ta∥[θ] ≤M1−θ
0 Mθ

1 ∥g∥F ≤M1−θ
0 Mθ

1 ∥f∥F ≤M1−θ
0 Mθ

1 (∥a∥[θ] + ε).

Lo que concluye la prueba.

Ahora, se puede expresar el Teorema de interpolación de Riesz en el lenguaje que se estableció
anteriormente.

Teorema 5.7.7. Sean 1 ≤ p0, p1 ≤ ∞, entonces para 0 < θ < 1 se tiene que

(Lp0 , Lp1)[θ] = Lp, con
1

p
=

1− θ

p0
+

θ

p1
.

Y este se extiende al caso de espacios pesados, vea Begh y Löfstrom [4]

Teorema 5.7.8. Suponga que 1 ≤ p0, p1 <∞. Entonces, para 0 < θ < 1 se tiene que

(Lp0(w0), L
p1(w1))[θ] = Lp(w),

donde
1

p
=

1− θ

p0
+

θ

p1
y w = w

p(1−θ)
p0

0 w
pθ
p1
1 .

Ahora, se presenta el resultado de dualidad de interpolación compleja que permite explotar el
hecho que BMO es el dual de H1.

Teorema 5.7.9. Sea A := (A0, A1) una pareja compatible de espacios de Banach tales que ∆(A) es
denso en ambos espacios y al menos uno de los espacios es reflexivo. Entonces

(A0, A1)
′
[θ] = (A′

0, A
′
1)[θ],

con igualdad de normas.

Este resultado no se demuestra, ya que se encuentra fuera de los alcances de este trabajo, pero
se recomienda revisar Bergh y Löfstrom [4]. Por otra parte, se presenta el resultado que permite
realizar interpolación utilizando el espacio H1 y el espacio BMO.

Teorema 5.7.10. Sea 1 < p ≤ ∞, entonces se tiene que para funciones Ω → X, con Ω = Rn,Tn,

(BMO, Lp′
)[θ] = Lq′ , con

1

q
= 1− θ +

θ

p

si además, X ′ cumple la propiedad Radon-Nikodym, se tiene que

(H1, Lp)[θ] = Lq.

Sin embargo, para los intereses de este trabajo, se demuestran el siguiente corolario, cuya prueba
directa contiene las ideas generales del resultado anterior.

Corolario 5.7.11. Sea z 7→ Tz un mapa de la banda cerrada 0 ≤ Rez ≤ 1 a operadores acotados en
L2(Ω;X), con Ω = Rn,Tn. Suponga que el mapa es continuo y acotado en la banda, y analítico en
su interior. Además, fije 1

p = 1− θ
2 , para 0 < θ < 1.
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1. Suponga que X ′ cumple la propiedad de Radon-Nikodym,

sup
y∈R

∥Tiyf∥L1 ≤M0∥f∥H1 , f ∈ L2 ∩H1

sup
y∈R

∥T1+iyf∥L2 ≤M1∥f∥L2 , f ∈ L2.

Entonces, se tiene que
∥Tθf∥Lp ≤Mθ∥f∥Lp , f ∈ L2 ∩ Lp.

2. Suponga

sup
y∈R

∥Tiyf∥BMO ≤M0∥f∥L∞ , f ∈ L2 ∩ L∞

sup
y∈R

∥T1+iyf∥L2 ≤M1∥f∥L2 , f ∈ L2.

Entonces, se tiene que
∥Tθf∥Lp′ ≤Mθ∥f∥Lp′ , f ∈ L2 ∩ Lp′

.

Donde Mθ solo depende de M0, M1, y θ.

Demostración. La prueba del primer inciso contiene incluida la prueba del segundo inciso, gracias
a la propiedad de dualidad entre H1 y BMO. Así que suponga las hipótesis del inciso (1). Sea Sz el
dual (en L2) del operador Tz, es decir∫

Ω

gTz(f) dx =

∫
Ω

Sz(g)f dx,

para f ∈ L2(Ω;X), g ∈ L2(Ω;X ′). Entonces, se tiene qu el mapa z 7→ Sz es continuo y acotado en
la banda cerrada, y analítico en su interior. Ahora, para g ∈ L2 ∩ L∞, y f ∈ L2 ∩H1, se tiene que∣∣∣∣∫

Ω

Siy(g)f dx

∣∣∣∣ = ∣∣∣∣∫
Ω

gT−iy(f) dx

∣∣∣∣ ≤ ∥T−iyf∥L1(X)∥g∥L∞(X′) ≤M0∥f∥H1(X)∥g∥L∞(X′).

Entonces, se tiene que Siyg, es la restricción de un funcional acotado en H1(X), por lo que en vista
del Teorema 5.6.17, se tiene que ∥Siyg∥BMO(X′) ≤ C0M0∥g∥L∞(X′). La dualidad de L2 permite un
argumento similar para así concluir ∥Siyg∥L2(X′) ≤ M1∥g∥L2(X′), y que Sz cumple las condiciones
del inciso (2) para X ′. Así que se demuestra ese inciso, y las normas a partir de este momento
son respecto a X ′. Ahora, sea x 7→ Q(x) una función medible que mapea puntos a cubos que los
contienen, y sea η(x, y) una función medible en Ω × Ω, tal que |η(x, y)| = 1. Además, se define el
operador

(Uzg)(x) :=
1

|Q(x)|

∫
Q(x)

[F (y)− FQ(x)]η(x, y) dy,

con F = Szg. Note que sup |Uzg(x)| = F#(x), si el supremo se toma sobre todas las funciones Q
y η. Además, como ∥F#∥L2 ≤ 2∥MF∥L2 ≤ C1∥F∥2 (vea el Teorema 5.1.29), entonces se tiene que
la función z 7→

∫
Uz(g)f dx es acotada y continua en la banda cerrada, y analítica en su interior.

También cumple que

∥Uiyg∥L∞ = ∥F#∥L∞ = ∥F∥BMO = ∥Siyg∥BMO ≤ C0M0∥g∥L∞ , g ∈ L2 ∩ L∞,

∥U1+iyg∥L2 = ∥F#∥L2 ≤ C1∥F∥L2 = C1∥S1+iyg∥L2 ≤ C1M1∥g∥L2 , g ∈ L2.

Por el Teorema de interpolación de Riesz-Thorin (Teorema 5.1.7), se tiene que

∥Uθg∥Lp′ ≤ (C0M0)
1−θ(C1M1)

θ∥g∥Lp′ ,
1

p′
=
θ

2
.
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Como esta cota no depende de las funciones Q o η, entonces se puede tomar el supremo y obtener
que

∥F#∥Lp′ = ∥(Sθg)
#∥Lp′ ≤ (C0M0)

1−θ(C1M1)
θ∥g∥Lp′ .

Al aplicar el Teorema 5.6.16, se obtiene que

∥Sθg∥Lp′ (X′) ≤ ∥M(Sθg)∥Lp′ ≤ Cp′∥(Sθg)
#∥Lp′ ≤ Cp′(C0M0)

1−θ(C1M1)
θ∥g∥Lp′ (X′).

Por lo que se obtiene el resultado del inciso (2). El inciso (1) se completa mediante un argumento
de dualidad, ambos con Mθ = Cp′(C0M0)

1−θ(C1M1)
θ.



CAPÍTULO 6

Operadores pseudo-diferenciales

En esta sección se presenta la teoría de operadores pseudo-diferenciales con símbolos en las clases
de Hörmander, como ha sido desarrollado por Ruzhansky y Turunen [31].

6.1. Definición y propiedades básicas en Rn

Definición 6.1.1 (Clases de símbolos de Hörmander Sm
ρ,δ(Rn×Rn)). Sean 0 ≤ δ, ρ ≤ 1. Se dice que

a ∈ Sm
ρ,δ(Rn × Rn) si a := (x, ξ) es suave en Rn × Rn y cumple que

|∂βx∂αξ a(x, ξ)| ≲αβ ⟨ξ⟩m−ρ|α|+δ|β|,

para cualesquiera multi-índices α, β. Se dice que estos símbolos tienen orden m ∈ R.

Definición 6.1.2. Sean 0 ≤ δ, ρ ≤ 1 y sea a ∈ Sm
ρ,δ(Rn × Rn). El operador pseudo-diferencial con

símbolo a := a(x, ξ) se define como

Taf(x) :=

∫
Rn

e2πix·ξa(x, ξ)f̂(ξ) dξ,

donde f ∈ S(Rn). La clase de operadores pseudo-diferenciales con símbolos en Sm
ρ,δ(Rn × Rn) se

denotan por Ψm
ρ,δ(Rn × Rn).

Proposición 6.1.3. Para a ∈ Sm
ρ,δ(Rn × Rn) y f ∈ S(Rn) se tiene que Taf ∈ S(Rn).

Demostración. Note que como f̂ ∈ S(Rn), se tiene que

|∂βxa(x, ξ)f̂(ξ)| ≲ ⟨ξ⟩m+δ|β|⟨ξ⟩−N ,

para algún N > 0 apropiado, por lo que todas sus derivadas respecto a x son absolutamente conver-
gentes y se tiene que Taf ∈ C∞(Rn). Ahora, se define el operador

Lξ := (1 + 4π2|x|2)−1(I − Lξ),

donde Lξ es el laplaciano. Note que Lξ(e
2πix·ξ) = e2πix·ξ y por integracion por partes se tiene que

Taf(x) =

∫
Rn

e2πix·ξLN
ξ [a(x, ξ)f̂(ξ)] dξ.

Por lo que |Taf(x)| ≲N ⟨x⟩−2N para cualquier N y se concluye que Taf decae rapidamente. Este
argumento se puede aplicar para cualquiera de sus derivadas y se obtiene que Taf ∈ S(Rn).

53
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Ejemplo 6.1.4 (Operadores diferenciales). Sea P :=
∑

|α|≤m aα(x)∂
α
x un operador de derivadas

parciales. Entonces, al considerarle como un operador pseudo-diferencial se tiene que su símbolo es
simplemente su polinomio característico p(x, ξ) =

∑
|α|≤m aα(x)(2πiξ)

α. Si las funciones coeficientes
aα son continuas, este símbolo pertenece a la clase de Hörmander de orden m.

Nota 6.1.5 (Kernel de un operador pseudo-diferencial). Se puede reescribir la definición de operador
pseudo-diferencial de la siguiente manera

Taf(x) =

∫
Rn

e2πix·ξa(x, ξ)f̂(ξ) dξ

=

∫
Rn

∫
Rn

e2πi(x−y)·ξa(x, ξ)f(y) dy dξ

=

∫
Rn

k(x, y)f(y) dy,

donde se define en el sentido de distribuciones al kernel de Schwartz del operador pseudo-diferencial
como

k(x, y) :=

∫
Rn

e2πi(x−y)·ξa(x, ξ) dξ

Teorema 6.1.6 (Composición de operadores pseudo-diferenciales). Sea 0 ≤ δ < ρ ≤ 1, sea a ∈
Sm1

ρ,δ (Rn × Rn) y sea b ∈ Sm2

ρ,δ (Rn × Rn). Entonces, existe un símbolo c ∈ Sm1+m2

ρ,δ (Rn × Rn) tal que
Tc = Ta ◦ Tb. Además, se tiene la fórmula asimptótica

c ∼
∑
α

(2πi)−|α|

α!
(∂αξ a)(∂

α
x b).

Es decir, para cualquier N > 0, se tiene que

c−
∑

|α|<N

(2πi)−|α|

α!
(∂αξ a)(∂

α
x b) ∈ S

m1+m2−(ρ−δ)N
ρ,δ (Rn × Rn).

Demostración. Fije un x0 ∈ Rn y sea χ ∈ C∞
0 (Rn) tal que suppχ ⊂ {x ∈ Rn : |x − x0| ≤ 2} y tal

que χ(x) = 1 para |x− x0| ≤ 1. Realice la descomposición

b = χb+ (1− χ)b := b1 + b2.

Entonces, se tiene que

(Ta ◦ Tb1)f(x) =
∫
Rn

∫
Rn

e2πi(x−y)·ηa(x, η)

∫
Rn

∫
Rn

e2πi(y−z)·ξb1(y, ξ)f(z) dz dξ dy dη

=

∫
Rn

∫
Rn

e2πi(x−z)·ξ
∫
Rn

∫
Rn

e2πi(x−y)·(η−ξ)a(x, η)b1(y, ξ) dy dηf(z) dz dξ,

donde se aprovecho que (x− y) · (η − ξ) + (x− z) · ξ = (x− y) · η + (y − z) · ξ. Por lo que se define

c(x, ξ) :=

∫
Rn

∫
Rn

e2πi(x−y)·(η−ξ)a(x, η)b1(y, ξ) dy dη

=

∫
Rn

e2πix·(η−ξ)a(x, η)b̂1(η − ξ, ξ) dη

=

∫
Rn

e2πix·ηa(x, η + ξ)b̂1(η, ξ) dη.

Como b1 tiene soporte compacto en x, se tiene que b̂1 es de decaimiento rápido uniformemente en ξ
y que

|b̂1(η, ξ)| ≲M ⟨η⟩−M ⟨ξ⟩m2 ,
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para todo M ≤ 0. La expansión de Taylor en la segunda variable de a(x, ξ + η) resulta en

a(x, ξ + η) =
∑

|α|<N

1

α!
∂αξ a(x, ξ)η

α +RN (x, ξ, η),

donde RN es un residuo que se discutirá más adelante. Al sustituir esta expresión en la fórmula para
c(x, ξ) se obtiene que∫

Rn

e2πix·η[∂αξ a(x, ξ)η
α]b̂1(η, ξ) dη = (2πi)−|α|∂αξ a(x, ξ)∂

α
x b1(x, ξ),

que corresponden a los términos de la expansión asimptótica. Ahora, el símbolo resultante del residuo
es ∫

Rn

e2πix·ηRN (x, ξ, η)b̂1(η, ξ) dη.

Pero, se puede estimar mediante

|RN (x, ξ, η)| ≲N |η|N máx{|∂αξ a(x, ζ)| : |α| = N, ζ interpolación de η y η + ξ}.

Note que si |η| ≤ |ξ|/2, entonces cualquier ζ de la expresión anterior es proporcional a ξ, por lo que
para este caso se puede estimar

|RN (x, ξ, η)| ≲N |η|N ⟨ξ⟩m1−(ρ−δ)N .

Por otra parte, si ρN ≥ m1, se tiene la siguiente cota para cualquier caso

|RN (x, ξ, η)| ≲N |η|N .

Combinando los estimativos y la expresión del residuo del símbolo se obtiene que∣∣∣∣∫
Rn

e2πix·ηRN (x, ξ, η)b̂1(η, ξ) dη

∣∣∣∣
≲M,N ⟨ξ⟩m1+m2−(ρ−δ)N

∫
|η|<|ξ|/2

⟨η⟩−M |η|N dη + ⟨ξ⟩m2

∫
|η|≥|ξ|/2

⟨η⟩−M |η|N dη.

Al escoger M lo suficientemente grande, se puede estimar el residuo simbólico por ⟨ξ⟩m1+m2−ρN .
Ahora, note que ∂αξ ∂

β
xRN (x, ξ, η) es el residuo de la expansión de ∂αξ ∂

β
xa(x, ξ + η). Por lo que un

argumento similar resulta en∣∣∣∣∫
Rn

e2πix·η[∂αξ ∂
β
xRN (x, ξ, η)]b̂1(η, ξ) dη

∣∣∣∣ ≲αβ ⟨ξ⟩m1+m2−ρN−ρ|α|+δ|β|.

Ahora, solo queda demostrar que Ta◦Tb2 tiene símbolo de orden −∞ y no afecta la fórmula asimptó-
tica. Para ello, se utiliza integración por partes para obtener propiedades de regularidad del símbolo
restante. Considere el Laplaciano en η

∆N1
η e2πi(x−y)·(η−ξ) = (−4π2|x− y|2)N1e2πi(x−y)·(η−ξ).

Y el Laplaciano en y,

(1−∆y)
N2e2πi(x−y)·(η−ξ) = (1 + 4π2|ξ − η|2)N2e2πi(x−y)·(η−ξ).

Además, se tiene que

⟨ξ − η⟩⟨η⟩ =
√
1 + |ξ − η|2 + |η|2 + |ξ − η|2|η|2 ≥

√
1 + |ξ|2 = ⟨ξ⟩.
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Combinando estos estimativos y las desigualdades simbólicas se obtiene que

|c2(x, ξ)| =
∣∣∣∣∫

Rn

∫
Rn

e2πi(x−y)·(η−ξ)a(x, η)b2(y, ξ) dy dη

∣∣∣∣
=

∣∣∣∣∣
∫
Rn

∫
Rn

e2πi(x−y)·(η−ξ)
∆N1

ξ a(x, η)

(−4π2|x− y|2)N1

(1−∆y)
N2b2(y, ξ)

(1 + 4π2|ξ − η|2)N2
dy dη

∣∣∣∣∣
≲
∫
Rn

∫
Rn

⟨η⟩m1−2ρN1

⟨x− y⟩2N1

⟨ξ⟩m2+2δN2

⟨ξ − η⟩2N2
dy dη

≲
∫
Rn

⟨η⟩m1−2ρN1+2N2⟨ξ⟩m2−2(1−δ)N2 dη

≲ ⟨ξ⟩m2−2(1−δ)N2 ,

donde se escoge N1 tal que −2ρN1 + 2N2 +m1 < −n. Por lo que se puede escoger N2 libremente
para obtener la cota deseada. Un argumento análogo funciona para las derivadas de c2, por lo que
este pertenece a S−∞(Rn × Rn).

Definición 6.1.7 (Potencial de Bessel). Se define al potencial de Bessel de orden m ∈ R al operador
pseudo-diferencial con símbolo ⟨ξ⟩m. Este se denota por Jm.

Se puede ver que la composición con este operador no presenta la restricción δ < ρ.

Teorema 6.1.8. Sea 0 ≤ δ < 1, sea 0 < ρ ≤ 1, sea a := a(x, ξ) ∈ Sm
ρ,δ(Rn × Rn), y sea b := b(ξ) ∈

Ss
1,δ(Rn × Rn). Entonces TaTb y TbTa pertenecen a Sm+s

ρ,δ (Rn × Rn). Además, TaTb tiene símbolo
a(x, ξ)b(ξ).

Demostración. Se tiene que para Tc = TaTb

c(x, ξ) :=

∫
Rn

∫
Rn

e2πi(x−y)·(η−ξ)a(x, η)b(ξ) dy dη

= b(ξ)

∫
Rn

e2πi(y−x)·ξâ(x, y − x) dy

= b(ξ)a(x, ξ).

Para Tc = TbTa se puede utilizar la fórmula asintótica de la fórmula de composición. Para manejar
el hecho que en este caso se permite δ ≥ ρ para el símbolo a, se aprovecha el hecho que

|∂αξ b(ξ)∂αx a(x, ξ)| ≲ ⟨ξ⟩s−|α|⟨ξ⟩m+δ|α|.

Por lo que se tiene el orden deseado en ambos casos.

6.2. Definición y propiedades básicas en Tn

El cálculo simbólico en el toro Tn presenta ciertas diferencias respecto al caso euclideano. Gran
parte de ellas surgen del hecho que el dominio de frecuencias correspondiente es el retículo Zn. Por
lo que es necesario definir herramientas análogas que funcionen en el caso discreto.

Definición 6.2.1. Sea φ : Zn → C, entonces se definen los operadores de diferencia como

∆ξjφ(ξ) := φ(ξ + δj)− φ(ξ),

∆ξjφ(ξ) := φ(ξ)− φ(ξ − δj).

Además, para un multi-índice α ∈ Nn
0 , se define

∆α
ξ := ∆α1

ξ1
· · ·∆αn

ξn
, ∆

α

ξ := ∆
α1

ξ1 · · ·∆αn

ξn .
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Proposición 6.2.2. Sea φ : Zn → C, entonces

∆α
ξ φ(ξ) =

∑
β≤α

(−1)|α−β|
(
α

β

)
φ(ξ + β).

Demostración. Se define el operador de traslación Ej := (I+∆ξj ), que actua de la siguiente manera

Ejφ(ξ) = (I +∆ξj )φ(ξ) = φ(ξ + δj).

Entonces, por el teorema del binomio se tiene que

∆α
ξ φ(ξ) = (E − I)αφ(ξ)

=
∑
β≤α

(−1)|α−β|
(
α

β

)
Eβφ(ξ)

=
∑
β≤α

(−1)|α−β|
(
α

β

)
φ(ξ + β).

Lo que completa la prueba.

Note que este operador tiene propiedades análogas a las de la derivada en el caso continuo

Proposición 6.2.3. Sean φ,ψ : Zn → C, sean α, β ∈ Nn
0 , entonces

1. ∆α
ξ (sφ+ tψ)(ξ) = s∆α

ξ φ(ξ) + t∆α
ξ ψ(ξ),

2. ∆α
ξ∆

β
ξ = ∆α+β

ξ = ∆β
ξ∆

α
ξ ,

3. ∆α
ξ (φψ)(ξ) =

∑
β≤α

(
α
β

)
[∆β

ξφ(ξ)][∆
α−β
ξ ψ(ξ + β)].

Demostración. Todas estas propiedades pueden ser demostradas mediante inducción, por lo que solo
se demostrarán los casos base. La primera propiedad es equivalente a decir que los operadores de
diferencia son lineales. Entonces, se tiene que

∆ξj (sφ+ tψ)(ξ) = (sφ+ tψ)(ξ + δj)− (sφ+ tψ)(ξ)

= sφ(ξ + δj) + tψ(ξ + δj)− sφ(ξ)− tψ(ξ)

= s∆ξjφ(ξ) + t∆ξjψ(ξ).

La segunda propiedad quiere decir que los operadores de diferencia conmutan, es decir

∆ξi∆ξjφ(ξ) = ∆ξi [φ(·+ δj)− φ(·)](ξ)
= ∆ξi [φ(·+ δj)](ξ)−∆ξiφ(ξ)

= φ(ξ + δj + δi)− φ(ξ + δj)− φ(ξ + δi) + φ(ξ)

= ∆ξj [φ(·+ δi)− φ(·)](ξ)
= ∆ξj∆ξiφ(ξ).

La tercera propiedad es análoga a la regla de Leibniz, o regla del producto. En efecto,

∆ξj (φψ)(ξ) = φ(ξ + δj)ψ(ξ + δj)− φ(ξ)ψ(ξ)

= φ(ξ + δj)ψ(ξ + δj) + φ(ξ)ψ(ξ + δj)− φ(ξ)ψ(ξ + δj)− φ(ξ)ψ(ξ)

= φ(ξ)[ψ(ξ + δj)− ψ(ξ)] + [φ(ξ + δj)− φ(ξ)]ψ(ξ + δj)

= φ(ξ)[∆ξjψ(ξ)] + [∆ξjφ(ξ)]ψ(ξ + δj).

Lo que concluye la prueba.
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Proposición 6.2.4 (Suma por partes). Sean φ,ψ : Zn → C. Entonces, se tiene que∑
ξ∈Zn

φ(ξ)[∆α
ξ ψ(ξ)] = (−1)|α|

∑
ξ∈Zn

[∆
α

ξ φ(ξ)]ψ(ξ),

dado que ambas series sean absolutamente convergentes.

Demostración. Para probarlo para un multi-índice arbitrario basta con demostrarlo para los casos
base y luego el resultado se obtiene por recursividad. Entonces, se tiene que∑

ξ∈Zn

φ(ξ)[∆ξjψ(ξ)] =
∑
ξ∈Zn

φ(ξ)[ψ(ξ + δj)− ψ(ξ)]

=
∑
ξ∈Zn

φ(ξ)ψ(ξ + δj)−
∑
ξ∈Zn

φ(ξ)ψ(ξ)

=
∑
ξ∈Zn

φ(ξ − δj)ψ(ξ)−
∑
ξ∈Zn

φ(ξ)ψ(ξ)

=
∑
ξ∈Zn

[φ(ξ − δj)− φ(ξ)]ψ(ξ)

= −
∑
ξ∈Zn

[∆ξjφ(ξ)]ψ(ξ).

Lo que concluye la prueba.

En el caso discreto, los polinomios tradicionales y los operadores de diferencia no se compor-
tan exactamente como sus contrapartes continuas. Lo que inspira definiciones alternativas que se
presentan a continuación.

Definición 6.2.5. Para θ ∈ Zn, se define su polinomio discreto como θ(0)j := 1, y

θ
(k+1)
j := θ

(k)
j (θj − k).

Además, para cualquier multi-índice α ∈ Nn
0 , se define

θ(α) := θ
(α1)
1 · · · θ(αn)

n .

Similarmente, se define D(0)
yj := I, y

D(k+1)
yj

:= D(k)
yj

(
∂yj

i2π
− kI

)
,

D(α)
y := D(α1)

y1
· · ·D(αn)

yn
.

Proposición 6.2.6. Para α, β ∈ Nn
0 , se tiene que

∆β
θ θ

(α) = α(β)θ(α−β),

lo que concuerda con el caso continuo ∂βθ θ
α = α(γ)θα−β.

Demostración. Basta con ver que

∆θjθ
(αj)
j = (θj + 1)(αj) − θ

(αj)
j

= (θj + 1)θj · · · (θj − αj + 2)− θ
(αj)
j

= (θj + 1)θ
(αj−1)
j − θ

(αj−1)
j (θj − αj + 1)

= αjθ
(αj−1)
j .

El resultado sigue de recursividad.
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Definición 6.2.7 (Integración discreta). Para b ≥ 0, se definen

Ibk :=
∑

0≤k<b

, y I−b
k := −

∑
−b≤k<0

.

Teorema 6.2.8 (’Teorema fundamental del cálculo’ discreto 1D). Sea θ ∈ Z, y sea α ∈ N0. Entonces,
se tiene que

Iθk1
Ik1

k2
· · · Ikα−1

kα
1 =

1

α!
θ(α).

Demostración. Note que en general se tiene que

Ibk∆kf(k) =
∑

0≤k<b

[f(k + 1)− f(k)] = f(b)− f(0).

Particularmente, Ibk∆kk
(j) = b(j), que se puede combinar con el hecho que ∆kk

(j) = ik(j−1), y el
resultado deseado sigue de una inducción.

La extensión al caso multi-dimensional es inmediata.

Corolario 6.2.9 (’Teorema fundamental del cálculo’ discreto). Sea θ ∈ Zn, y sea α ∈ Nn
0 . Entonces,

se tiene que
n∏

j=1

I
θj
k(j,1)I

k(j,1)
k(j,2) · · · I

k(j,αj−1)

k(j,αj)
1 =

1

α!
θ(α).

Ahora, se presenta el análogo discreto de la expansión de Taylor.

Teorema 6.2.10 (Expansión de Taylor discreta). Sea p : Zn → C. Entonces, se puede escribir como

p(ξ + θ) =
∑

|α|<M

1

α!
θ(α)∆α

ξ p(ξ) + rM (ξ, θ),

donde el residuo satisface

|∆ω
ξ rM (ξ, θ)| ≲M máx

|α|=M, ν∈Q(θ)
|θ(α)∆α+ω

ξ p(ξ + ν)|,

donde Q(θ) := {ν ∈ Zn : |νj | ≤ |θj | para todo j = 1, . . . , n}.

Demostración. Primero, para 0 ̸= α ∈ Nn
0 , se denota mα := mı́n{j : αj ̸= 0}. Para θ ∈ Zn, e

i ∈ {1, . . . , n}, se define ν(θ, i, k) ∈ Zn como

ν(θ, i, k)j :=


θj , 1 ≤ j < i,

k, j = i,

0, i < j ≤ n.

Se afirma que el residuo puede ser escrito como

rM (ξ, θ) =
∑

|α|=M

rα(ξ, θ),

donde

rα(ξ, θ) :=

n∏
j=1

I
θj
k(j,1)I

k(j,1)
k(j,2) · · · I

k(j,αj−1)

k(j,αj)
∆α

ξ p(ξ + ν(θ,mα, k(mα, αmα
))).

Se realiza una prueba por inducción, para M = 1, se tiene que

rδi(ξ, θ) = Iθik ∆ξip(ξ + ν(θ, i, k)) = p(ξ + ν(θ, i, θi))− p(ξ + ν(θ, i, 0)).
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Por lo que se cumple el resultado deseado
n∑

i=1

rδi(ξ, θ) =

n∑
i=1

[p(ξ + ν(θ, i+ 1, 0))− p(ξ + ν(θ, i, 0))] = p(ξ + θ)− p(ξ) = r1(ξ, θ).

Ahora, suponga el resultado es verdadero para |α| =M , entonces se tiene que

rM+1(ξ, θ) = rM (ξ, θ)−
∑

|α|=M

1

α!
θ(α)∆α

ξ p(ξ)

=
∑

|α|=M

(
rα(ξ, θ)−

1

α!
θ(α)∆α

ξ p(ξ)

)

=
∑

|α|=M

n∏
j=1

I
θj
k(j,1)I

k(j,1)
k(j,2) · · · I

k(j,αj−1)

k(j,αj)
∆α

ξ [p(ξ + ν(θ,mα, k(mα, αmα)))− p(ξ)].

Por otra parte, se tiene la igualdad
mα∑
i=1

I
ν(θ,mα,k)i
l ∆ξip(ξ + ν(θ, i, l)) =

mα∑
i=1

[p(ξ + ν(θ, i, ν(θ,mα, k)i))− p(ξ + ν(θ, i, 0))]

=

mα∑
i=1

[p(ξ + ν(ν(θ,mα, k), i+ 1, 0))− p(ξ + ν(θ, i, 0))]

= p(ξ + ν(θ,mα, k))− p(ξ).

Por lo que se obtiene que

rM+1(ξ, θ) =
∑

|α|=M

n∏
j=1

I
θj
k(j,1)I

k(j,1)
k(j,2) · · · I

k(j,αj−1)

k(j,αj)

mα∑
i=1

I
ν(θ,mα,αmα )i
li

∆α+δi
ξ p(ξ + ν(θ, i, li))

=
∑

|β|=M+1

n∏
j=1

I
θj
k(j,1)I

k(j,1)
k(j,2) · · · I

k(j,βj−1)

k(j,βj)
∆β

ξ p(ξ + ν(θ,mβ , k(mβ , βmβ
))).

Lo que completa la inducción. Para obtener los estimativos del residuo, se considera que

|∆ω
ξ rM (ξ, θ)| =

∣∣∣∣∣∣
∑

|α|=M

∆ω
ξ rα(ξ, θ),

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

|α|=M

n∏
j=1

I
θj
k(j,1)I

k(j,1)
k(j,2) · · · I

k(j,αj−1)

k(j,αj)
∆α+ω

ξ p(ξ + ν(θ,mα, k(mα, αmα)))

∣∣∣∣∣∣
≤
∑

|α|=M

1

α!
|θ|(α) máx

ν∈Q(θ)
|∆α+ωp(ξ + ν)|.

Lo que completa la prueba.

A continuación se presentan las definiciones toroidales para símbolos de clases de Hörmander y
sus respectivos operadores pseudo-diferenciales.

Definición 6.2.11 (Clase de símbolos toroidales Sm
ρ,δ(Tn × Zn)). Sea m ∈ R, sean 0 ≤ δ, ρ ≤ 1.

Entonces, la clase de símbolos toroidales Sm
ρ,δ(Tn × Zn) consiste de las funciones a := a(x, ξ) :

Tn × Zn → C que son suaves en x para todo ξ, y que satisfacen las desigualdades simbólicas

|∆α
ξ ∂

β
xa(x, ξ)| ≲αβ ⟨ξ⟩m−ρ|α|+δ|β|,

para cualesquiera multi-índices α, β ∈ Nn
0 .
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Definición 6.2.12 (Operadores pseudo-diferenciales toroidales). Para a ∈ Sm
ρ,δ(Tn×Zn), se denota

Ta a su operador pseudo-diferencial toroidal correspondiente, que se define como

Taf(x) :=
∑
ξ∈Zn

ei2πx·ξa(x, ξ)f̂(ξ).

Además, se dice que Ta ∈ Ψm
ρ,δ(Tn × Zn).

Proposición 6.2.13. Sea f ∈ C∞(Tn), entonces Taf está bien definido y Taf ∈ C∞(Tn). Además,
Ta es un operador continuo de C∞(Tn) en sí mismo.

Demostración. Se tiene que f̂ ∈ S(Zn), entonces la serie en la definición de Taf converge absoluta-
mente y Taf ∈ C∞(Tn). Por otra parte, se tiene que

Taf(x) =
∑
ξ∈Zn

ei2πx·ξa(x, ξ)f̂(ξ)

=
∑
ξ∈Zn

a(x, ξ)

∫
Tn

ei2π(x−y)·ξf(y) dy

=
∑
ξ∈Zn

a(x, ξ)⟨ξ⟩−2M

∫
Tn

ei2π(x−y)·ξ
(
I − Ly

4π2

)M

f(y) dy,

donde Ly es el Laplaciano respecto a y. Entonces, basta escoger M lo suficientemente grande para
obtener convergencia absoluta de la serie. Por lo que, para fj → f en C∞(Tn), se puede intercambiar
el límite con la serie y la integral mediante la convergencia dominada de Lebesgue para obtener
Tafj → Taf en C∞(Tn).

Nota 6.2.14 (Kernel de Schwartz para operadores pseudo-diferenciales toroidales). La definición
de Taf para un símbolo toroidal sugiere que puede ser reescrito (ignorando preguntas acerca de
convergencia) como

Taf(x) =

∫
Tn

∑
ξ∈Zn

ei2π(x−y)·ξa(x, ξ)f(y) dy =

∫
Tn

k(x, y)f(y) dy,

donde k(x, y) es el kernel de Schwartz que se expresa como

k(x, y) :=
∑
ξ∈Zn

ei2π(x−y)·ξa(x, ξ),

y se entiende en el sentido de distribuciones.

Teorema 6.2.15. Sean 0 ≤ δ < ρ ≤ 1, sea a ∈ Sm
ρ,δ(Tn × Zn), y sea b ∈ Sl

ρ,δ(Rn × Zn). Entonces,
el símbolo del operador TaTb pertenece a Sm+l

ρ,δ (Rn ×Zn), y sigue la siguiente expansión asimptótica∑
γ≥0

1

γ!
[∆γ

ξa(x, ξ)][D
(γ)
x b(x, ξ)].

Demostración. Se tiene que el símbolo de la composición esta dado por

c(x, ξ) :=
∑
η∈Zn

∫
Tn

ei2π(x−y)·(η−ξ)a(x, η)b(y, ξ) dy

=
∑
η∈Zn

ei2πx·(η−ξ)a(x, η)̂b(η − ξ, ξ)

=
∑
η∈Zn

ei2πx·ηa(x, η + ξ)̂b(η, ξ).
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Ahora, se utiliza la expansión de Taylor discreta para obtener que

c(x, ξ) =
∑
η∈Zn

ei2πx·η

 ∑
|γ|<N

1

γ!
∆γ

ξa(x, ξ)η
(γ) +RN (x, ξ, η)

 b̂(η, ξ)
=
∑

|γ|<N

1

γ!

[
∆γ

ξa(x, ξ)
] ∑
η∈Zn

ei2πx·η b̂(η, ξ)η(γ) +
∑
η∈Zn

ei2πx·ηRN (x, ξ, η)̂b(η, ξ)

=
∑

|γ|<N

1

γ!

[
∆γ

ξa(x, ξ)
]
D(γ)

x b(x, ξ) + EN (x, ξ).

Ahora, solo queda estimar el término correspondiente al error. En efecto, se tiene que

|∆α′

ξ ∂
β′

x [ei2πx·η b̂(η, ξ)]| =
∣∣∣∣∆α′

ξ ∂
β′

x e
i2πx·η

∫
Tn

e−i2πy·ηb(y, ξ) dy

∣∣∣∣
=

∣∣∣∣∆α′

ξ ∂
β′

x e
i2πx·η⟨η⟩−r

∫
Tn

⟨η⟩re−i2πy·ηb(y, ξ) dy

∣∣∣∣
=

∣∣∣∣∣∂β′

x e
i2πx·η⟨η⟩−r

∫
Tn

e−i2πy·η∆α′

ξ

(
1− Ly

4π2

)r/2

b(y, ξ) dy

∣∣∣∣∣
≲ ⟨η⟩|β

′|−r⟨ξ⟩l−ρ|α′|+δr.

Para el residuo de la serie de Taylor discreta se tiene que

|∆α′′

ξ ∂β
′′

x RN (x, ξ, η)| ≲ ⟨η⟩N máx
|ω|=N, ν∈Q(η)

|∆ω+α′′

ξ ∂β
′′

x a(x, ξ + ν)|

≲ ⟨η⟩N máx
|ω|=N, ν∈Q(η)

⟨ξ + ν⟩m−ρ(N+|α′′|)+δ|β′′|.

Entonces, por la fórmula de Leibniz discreta y tomando α′ + α′′ = α, β′ + β′′ = β, el término del
error puede ser acotado por

|∆α
ξ ∂

β
xEN (x, ξ)| ≲ ⟨ξ⟩l−ρ|α′|+δr

∑
η∈Zn

⟨η⟩N+|β′|−r máx
ν∈Q(η)

⟨ξ + ν⟩m−ρ(N+|α′′|)+δ|β′′|.

Ahora, suponga que |η| ≤ |ξ|/2, entonces el término de error puede ser acotado por

⟨ξ⟩l−ρ|α′|+δr+m−ρ(N+|α′′|)+δ|β′′|+n máx
|η|≤|ξ|/2

⟨η⟩N+|β′|−r,

y al escoger r = N + |β′|, se obtiene que

⟨ξ⟩m+l−(ρ−δ)N−ρ|α|+δ|β|+n.

Por lo que este término puede ser aproximado por cualquier ⟨ξ⟩−M escogiendo el N apropiado en
vista que ρ > δ. Por otra parte, si |η| > |ξ|/2, entonces para N lo suficientemente grande se puede
estimar el término del error por

⟨ξ⟩l−ρ|α′|+δr
∑

|η|>|ξ|/2

⟨η⟩N+|β′|−r ≲ ⟨ξ⟩l−ρ|α′|+δr+N+|β′|−r−1,

cuando r es más grande que N . Además, dado que δ < 1, se puede escoger r para estimar este
término por cualquier ⟨ξ⟩−M . Lo que completa la prueba.

Ahora, ha sido expuesto que la herramienta correspondiente al trabajar en el espacio de frecuen-
cias de símbolos toroidales es el cálculo de diferencias discretas. Sin embargo, puede ser de interés
extender las técnicas utilizadas en el análisis de símbolos euclideanos para obtener resultados simi-
lares. Para ello, se realiza un proceso conocido como la extensión del símbolo toroidal, que consiste
en una interpolación suave de un símbolo definido en Tn×Zn para obtener uno definido en Tn×Rn.
A continuación se presetnan los detalles de dicho proceso.
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Lema 6.2.16. Existen funciones ϕα ∈ S(Rn), para cada α ∈ Nn
0 , y una función θ ∈ S(Rn), tales

que
Pθ(x) :=

∑
k∈Zn

θ(x+ k) = 1,

(FRnθ)|Zn(ξ) = δ0(ξ) y ∂αξ (FRnθ)(ξ) = ∆
α

ξ ϕα(ξ),

para todo ξ ∈ Zn.

Demostración. Primero, considere el caso unidimensional. Sea θ ∈ C∞(R), tal que

supp θ ⊂ (−1, 1), θ(−x) = θ(x), θ(1− y) + θ(y) = 1,

para x ∈ R y 0 ≤ y ≤ 1. Note entonces que θ ∈ S(R), y por lo tanto FRθ ∈ S(R) también. En
particular, para ξ ∈ Z, se tiene que

(FRθ)(ξ) =

∫
R
θ(x)e−i2πx·ξ dx

=

∫ 1

0

[θ(x− 1) + θ(x)]e−i2πx·ξ dx

= δ0(ξ).

Ahora, si la ϕα ∈ S(R) deseada existe, entonces debe satisfacer que∫
R
ei2πx·ξ(FRθ)(ξ) dξ =

∫
R
ei2πx·ξ∆

α

ξ ϕα(ξ) dξ

= (1− ei2πx)α
∫
R
ei2πx·ξϕα(ξ) dξ.

Por lo que se obtiene la formula

(−i2πx)αθ(x) = (1− ei2πx)α(F−1
R ϕα)(x).

Entonces, se puede definir ϕα como

F−1
R ϕα)(x) :=


(

−i2πx
1−ei2πx

)α
θ(x), 0 < |x| < 1,

1, x = 0,

0, |x| ≥ 1.

Para el caso n-dimensional se puede definir el mapa x 7→ θ(x1) · · · θ(xn), que cumple las mismas
propiedades.

Nota 6.2.17. La clase de símbolos Sm
ρ,δ(Tn × Rn) se puede definir como el conjunto de símbolos en

la clase Sm
ρ,δ(Rn × Rn) que son 1-periódicos respecto a x.

Teorema 6.2.18. Sea 0 ≤ δ ≤ 1 y sea 0 < ρ ≤ 1. El símbolo ã ∈ Sm
ρ,δ(Tn × Zn) es un símbolo

toroidal si y solo si existe un símbolo euclideano a ∈ Sm
ρ,δ(Tn × Rn) tal que ã = a|Tn×Zn . Además,

esta extensión es única modulo S−∞(Tn × Rn).

Demostración. (⇐) Por el Teorema de Valor Medio se tiene que para cualquier multi-índice α ∈ Nn
0

∆α
ξ ∂

β
x ã(x, ξ) = ∆α

ξ ∂
β
xa(x, ξ)

= ∂αξ ∂
β
xa(x, ξ)|ξ=η,

para algún η ∈ Q := [ξ1, ξ1 + α1]× · · · × [ξn, ξn + αn]. Por lo que, se obtiene que

|∆α
ξ ∂

β
x ã(x, ξ)| = |∂αξ ∂βxa(x, ξ)|ξ=η|

≲αβ ⟨η⟩m−ρ|α|+δ|β|

≲α ⟨ξ⟩m−ρ|α|+δ|β|.
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(⇒) Sea θ ∈ S(Rn) como en el Lema 6.2.16, y se define

a(x, ξ) :=
∑
η∈Zn

(FRnθ)(ξ − η)ã(x, η).

Se puede ver que cuando ξ ∈ Zn, entonces a(x, ξ) = ã(x, ξ). Además, se tiene que

|∂αξ ∂βxa(x, ξ)| =

∣∣∣∣∣∣
∑
η∈Zn

∂αξ (FRnθ)(ξ − η)∂βx ã(x, η)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
η∈Zn

∆
α

ξ ϕα(ξ − η)∂βx ã(x, η)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
η∈Zn

ϕα(ξ − η)∆α
η∂

β
x ã(x, η)

∣∣∣∣∣∣
≲αβ

∑
η∈Zn

|ϕα(ξ − η)|⟨η⟩m−ρ|α|+δ|β|

≲α

∑
η∈Zn

⟨η⟩−M ⟨ξ − η⟩m−ρ|α|+δ|β|

≤ ⟨ξ⟩m−ρ|α|+δ|β|
∑
η∈Zn

⟨η⟩|m−ρ|α|+δ|β||−M

≲αβ ⟨ξ⟩m−ρ|α|+δ|β|.

Aquí se utilizó el hecho que ϕα ∈ S(Zn) y que ⟨ξ − η⟩q ≤ ⟨ξ⟩q⟨η⟩|q|. Lo que completa la prueba
de la existencia del símbolo. Para demostrar la unicidad, sean a, b ∈ Sm

ρ,δ(Tn × Rn), tales que
a|Tn×Zn = b|Tn×Zn . Entonces, se define c := a − b, y para ξ ∈ Rn \ Zn se escoge η ∈ Zn uno de sus
puntos más cercanos. Por lo que se tiene la siguiente expansión de Taylor de primer orden

c(x, ξ) = c(x, η) +
∑
|α|=1

rα(x, ξ, ξ − η)(ξ − η)α

=
∑
|α|=1

rα(x, ξ, ξ − η)(ξ − η)α,

donde

rα(x, ξ, θ) =

∫ 1

0

(1− t)∂αξ c(x, ξ + tθ) dt.

Entonces, se tiene que |c(x, ξ)| ≲ ⟨ξ⟩m−ρ, y este proceso puede aplicarse recursivamente a c y a sus
derivadas para concluir que c ∈ S−∞(Tn × Rn).

Definición 6.2.19 (Periodización). La periodización de una función f ∈ S(Rn) se define como

Pf(x) :=
∑
k∈Zn

f(x+ k).

Teorema 6.2.20 (Periodización de operadores). Sea a := a(x, ξ) ∈ Sm
ρ,δ(Rn × Rn), una función

1-periodica en x para todo ξ. Sea ã = a|Tn×Zn , entonces

(P ◦ Ta)f = (Tã ◦ P)f,

para toda f ∈ S(Rn).
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Demostración. Se tiene que

P(Taf)(x) =
∑
k∈Zn

(Taf)(x+ k)

=
∑
k∈Zn

∫
Rn

ei2π(x+k)·ξa(x+ k, ξ)(FRnf)(ξ) dξ

=

∫
Rn

(∑
k∈Zn

ei2πk·ξ

)
ei2πx·ξa(x, ξ)(FRnf)(ξ) dξ

=

∫
Rn

δZn(ξ)ei2πx·ξa(x, ξ)(FRnf)(ξ) dξ

=
∑
ξ∈Zn

ei2πx·ξa(x, ξ)(FRnf)(ξ)

=
∑
ξ∈Zn

ei2πx·ξa(x, ξ)FTn(Pf)(ξ)

= (Tã ◦ P)f(x).

Lo que completa la prueba.

Al combinar este resultado con el Teorema 6.2.18, se obtiene que

Corolario 6.2.21. Sea 0 ≤ δ ≤ 1, y sea 0 < ρ ≤ 1. Entonces, se tiene que

Ψm
ρ,δ(Tn × Rn) = Ψm

ρ,δ(Tn × Zn).



CAPÍTULO 7

Continuidad de operadores pseudo-diferenciales

En este capítulo se presentan resultados clásicos y originales, obtenidos con Cardona [12, 10, 11],
acerca de la continuidad de los operadores pseudo-diferenciales discutidos anteriormente. Se incluyen
ciertos resultados en Rn, pero se presenta un mayor énfasis para los resultados en el caso del toro
Tn.

7.1. Continuidad en espacios de Lebesgue

7.1.1. Continuidad de operadores pseudo-diferenciales en espacios de Le-
besgue Lp

Teorema 7.1.1. Sea a ∈ Sm
ρ,δ(Rn × Rn), entonces su kernel de Schwartz cumple que

|k(x, y)| ≲N |x− y|−N ,

para x ̸= y, y para cualquier N > (m+ n)/ρ.

Demostración. Con el argumento de integración por partes se tiene que

(2πi)|γ|(x− y)γk(x, y) =

∫
Rn

∂γξ [e
2πi(x−y)·ξ]a(x, ξ) dξ

= (−1)|γ|
∫
Rn

e2πi(x−y)·ξ∂γξ [a(x, ξ)] dξ.

Entonces, si se fija |γ| = N , se tiene que

|x− y|−N |k(x, y)| ≲
∫
Rn

⟨ξ⟩m−ρN dξ,

que es finito cuando m− ρN < −n.

Teorema 7.1.2. Sea a ∈ S0
1,0(Rn ×Rn), entonces Ta extiende a un operador acotado de L2(Rn) en

sí mismo.

Demostración. Primero, suponga que a := a(x, ξ) tiene soporte compacto respecto a x. Además, es
suficiente demostrar este enunciado para funciones f ∈ S(Rn) debido a que este es secuencialmente
denso en L2(Rn) y a un simple argumento analítico. Entonces, se define a la transformada de Fourier
de a respecto a x como

â(λ, ξ) := F{a(·, ξ)}(λ).

66
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Ahora, note que para cualquier multi-índice α ∈ Nn
0 se tiene que

(2πiλ)αâ(λ, ξ) =

∫
Rn

e−2πix·λ∂αx a(x, ξ) dx.

Entonces, |(2πiλ)αâ(λ, ξ)| ≤ Cα uniformemente en ξ. Por otra parte, se tiene que

Taf(x) =

∫
Rn

e2πix·ξ
∫
Rn

e2πix·λâ(λ, ξ)f̂(ξ) dλ dξ

=

∫
Rn

e2πix·λTâf(x) dλ.

Entonces, gracias a la identidad de Plancherel

∥Tâf∥L2 = ∥F(Tâf)∥L2 = ∥â(λ, ·)f̂∥L2

≤ sup
ξ∈Rn

|â(λ, ξ)|∥f̂∥L2 ≲ ⟨λ⟩−N∥f∥L2 ,

para cualquier N ≥ 0. Por lo que

∥Taf∥L2 ≤
∫
Rn

∥Tâf∥L2 dλ

≲
∫
Rn

⟨λ⟩−N∥f∥L2 dλ ≲ ∥f∥L2 ,

cuando se escogeN > n. Ahora, considere el caso en el que el símbolo no necesariamente tiene soporte
compacto. Para ello, se fija x0 = 0 y se descompone f = f1 + f2, donde f1 y f2 son funciones suaves
tales que |f1| ≤ |f |, |f2| ≤ |f |, y que supp f1 ⊂ {x ∈ Rn : |x| ≤ 3}, supp f2 ⊂ {x ∈ Rn : |x| ≥ 2}.
Fije η ∈ C∞

0 (Rn) tal que sea igual a uno en la bola unitaria. Entonces∫
{|x|≤1}

|Taf1(x)|2 dx =

∫
Rn

|Tηaf1(x)|2 dx

≲
∫
Rn

|f1(x)|2 dx

≲
∫
|x|≤3

|f(x)|2 dx.

Ahora, por el Teorema 7.1.1, se tiene que

|k(x, y)| ≲N |x− y|−N ≲N |y|−N ,

dado que |y| ≥ 2 y |x| ≤ 1, que implica que |x− y| ≥ 1. Entonces, se obtiene que

|Taf2(x)| ≤
∫
{|y|≥2}

|k(x, y)||f2(y)|dy

≲
∫
{|y|≥2}

|f2(y)|
|y|N

dy

≲
∫
Rn

|f(y)|
⟨y⟩N

dy

≤
(∫

Rn

|f(y)|2

⟨y⟩N
dy

)1/2(∫
Rn

1

⟨y⟩N
dy

)1/2

≲

(∫
Rn

|f(y)|2

⟨y⟩N
dy

)1/2

,
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cuando se elige N > n. Por lo que se tiene que∫
{|x|≤1}

|Taf2(x)|2 dx ≲
∫
Rn

|f(y)|2

⟨y⟩N
dy.

Note que los estimativos de f1 y f2 solo dependen de la dimensión n y las constantes de las des-
igualdades simbólicas de a. Es decir, no depende de x0, y se puede escribir que∫

{|x−x0|≤1}
|Taf(x)|2 dx ≲

∫
Rn

|f(x)|2 dx
⟨x− x0⟩N

.

Por lo tanto, si χA es la función característica del conjunto A, entonces al integrar respecto a x0 y
cambiar el orden de integración se obtiene que∫

Rn

∫
Rn

χ{|x−x0|≤1}|Taf(x)|2 dx dx0 ≲N

∫
Rn

∫
Rn

|f(x)|2 dx
⟨x− x0⟩N

dx0

|B(1)|
∫
Rn

|Taf(x)|2 dx ≲N

∫
Rn

|f(x)|2 dx.

Lo que completa la prueba.

Nota 7.1.3. Los operadores T ∈ Ψ0
1,0(Rn×Rn) tienen propiedades que los hacen bastante especiales.

En realidad, son ejemplos de los tipos de operadores que dieron inicio a la teoría de operadores
integrales singulares de Calderón-Zygmund [7]. En particular, se puede utilizar esta teoría para
concluir que los operadores en Ψ0

1,0(Rn × Rn) son continuos de Lp en sí mismo, para 1 < p < ∞.
Por lo que se enuncia este resultado sin demostración.

Teorema 7.1.4. Sea T ∈ Ψ0
1,0(Rn ×Rn), entonces T se extiende a un operador acotado de Lp(Rn)

en sí mismo.

Ahora, se presenta un resultado de continuidad L2 para el caso del toro. En este caso se relajan
los requerimientos de regularidad del símbolo, en vista de la compacidad del toro.

Teorema 7.1.5. Sea k ∈ N, tal que k > n/2, y sea a := a(x, ξ) : Tn × Zn → C, tal que

|∂βxa(x, ξ)| ≤ C,

para todo x, ξ, y |β| ≤ k. Entonces Ta extiende a un operador acotado en L2(Tn).

Demostración. Primero, se define

Ayf(x) :=
∑
ξ∈Zn

∫
Tn

ei2π(x−z)·ξa(y, ξ)f(z) dz,

de tal manera que Axf(x) = Taf(x). Entonces se tiene que

∥Taf∥2L2 =

∫
Tn

|Taf(x)|2 dx ≤
∫
Tn

sup
y∈Tn

|Ayf(x)|2 dx.

Al aplicar el Teorema de encaje de Sobolev, se obtiene que

∥Taf∥2L2 ≲
∫
Tn

∑
|α|≤k

∫
Tn

|∂αyAyf(x)|2 dy dx

≤
∑
|α|≤k

sup
y∈Tn

∫
Tn

|∂αyAyf(x)|2 dx

=
∑
|α|≤k

sup
y∈Tn

∥∂αyAyf(x)∥2L2

≤
∑
|α|≤k

sup
y∈Tn

sup
ξ∈Zn

|∂αy a(y, ξ)|2∥f∥2L2 .

Lo que completa la prueba.
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A continuación se presentan una serie de resultados de continuidad Lp tanto en Rn como en Tn.
Como el enfoque de este trabajo es en el estudio de continuidad de operadores pseudo-diferenciales
en el toro, entonces no se incluirán las demostraciones de los resultados en el caso euclideano.
Sin embargo, las técnicas que se utilizarán en este caso pueden ser modificadas para recuperar
las demostraciones de los casos euclideanos. El primer resultado que se presenta es uno clásico,
demostrado por Fefferman [20] en el contexto euclideano.

Teorema 7.1.6 (Fefferman). Sean 0 ≤ δ < 1− ε < 1, y sea T ∈ Ψm
1−ε,δ(Rn × Rn). Suponga que

m ≤ −nε
∣∣∣∣1p − 1

2

∣∣∣∣ ,
entonces el operador T extiende a un operador continuo de Lp(Rn) en sí mismo para 1 < p <∞.

Este resultado fue extendido al caso toroidal para el rango 2 ≤ p < ∞ por Delgado [16]. Sin
embargo, se relajan los requerimientos del símbolo como fue el caso en el Teorema 7.1.5.

Teorema 7.1.7 (Delgado). Sea 0 < ε < 1, y sea k ∈ N tal que k > n/2. Sea a : Tn × Zn → C un
símbolo tal que

|∆α
ξ a(x, ξ)| ≲ ⟨ξ⟩−nε/2−(1−ε)|α|, |∂βxa(x, ξ)| ≲ ⟨ξ⟩−nε/2,

para |α|, |β| ≤ k. Entonces el operador Ta extiende a un operador acotado de Lp(Tn) en sí mismo
para 2 ≤ p <∞.

Nota 7.1.8. En el resultado de Delgado se puede entender a a(x, ξ) como un símbolo con regularidad
limitada, pero se puede considerar informalmente como un símbolo en una clase de Hörmander con
ρ = 1− ε y δ = 0.

Note que en ambos casos se requiere δ < ρ. Esta restricción puede ser salvada gracias al trabajo
de Álvarez y Hounie [2]. A partir de este momento, se denota λ := máx{(δ − ρ)/2, 0}.

Teorema 7.1.9 (Álvarez y Hounie). Sea 0 ≤ δ < 1, sea 0 < ρ ≤ 1, y sea T ∈ Ψm
ρ,δ(Rn × Rn).

Suponga

m ≤ −n
[
(1− ρ)

∣∣∣∣1p − 1

2

∣∣∣∣+ λ

]
,

entonces el operador T extiende a un operador continuo de Lp(Rn) en sí mismo.

El análogo toroidal de este resultado fue demostrado con Cardona en [12]. Aquí se presenta la
prueba del mismo siguiendo el mismo esquema que Álvarez y Hounie. Primero, se demuestran unos
estimativos del kernel de Schwarz de operadores pseudo-diferenciales toroidales bastante útiles.

Nota 7.1.10. Ahora, vale la pena indicar la razón por la que los resultados en el toro no son con-
secuencia de los del caso euclideano. Las clases H1 y BMO, no son estables bajo la multiplicación
de funciones test, por lo que no es posible tratar al toro como una variedad mediante particiones
de la unidad. Además, los operadores pseudo-diferenciales con símbolos en las clases de Hörmander
no son estables bajo cambios de coordenadas cuando ρ > 1 − δ. Esto justifica el hecho de que se
considere al toro Tn como un caso distinto a Rn y se estudien los resultados por separado.

Teorema 7.1.11. Sea T ∈ Ψm
ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1, con símbolo p(x, ξ) y con

kernel
k(x, y) :=

∑
ξ∈Zn

ei2π(x−y)·ξp(x, ξ). (7.1.1)

(a) (Propiedad pseudo-local) k es suave fuera de la diagonal. Además, dados α, β ∈ Nn
0 , entonces

para cualquier N > (m+ n+ |α+ β|)/ρ se tiene

sup
x̸=y

|x− y|N |∂αx ∂βy k(x, y)| = CαβN <∞. (7.1.2)
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(b) Suponiendo que p tiene soporte compacto en ξ uniformemente en x, entonces k es suave y
dados α, β ∈ Nn

0 , se tiene que

|∂αx ∂βy k(x, y)| ≲αβ ⟨x− y⟩−N . (7.1.3)

(c) Suponiendo m+M + n < 0 para algún M ∈ Z+, entonces k es una función continua acotada
con derivadas continuas acotadas hasta el orden M .

(d) Suponiendo m+M + n = 0 para algún M ∈ Z+, entonces existe C > 0 tal que

sup
|α+β|=M

|∂αx ∂βy k(x, y)| ≤ C| log |x− y|| , x ̸= y. (7.1.4)

Demostración. Primero, se observa que existe p̃ ∈ Sm
ρ,δ(Tn ×Rn) tal que p̃|Tn×Zn = p y con Tp̃ = T .

En consecuencia, el kernel de Schwarz puede considerarse como k(x, y) =
∫
Rn e

i2π(x−y)·ξp̃(x, ξ) dξ.
Ahora, las derivadas del kernel se ven de la siguiente manera:

∂αx ∂
β
y k(x, y) =

∫
Rn

(−i2πξ)βei2π(x−y)·ξ
∑
ω≤α

Cω(i2πξ)
α−ω∂ωx p̃(x, ξ) dξ, (7.1.5)

que es el kernel de un operador con símbolo de orden m+ |α+ β|. Entonces, es suficiente probar los
resultados cuando |α+ β| = 0.

(a) La continuidad del kernel k(x, y) se prueba en [31, Teorema 4.3.6]. Por integración por partes
se tiene que

(i2π)|γ|(x− y)γk(x, y) =

∫
Rn

∂γξ

[
ei2π(x−y)·ξ

]
p̃(x, ξ) dξ

=(−1)|γ|
∫
Rn

ei2π(x−y)·ξ∂γξ [p̃(x, ξ)] dξ.

Por lo tanto, si se fija |γ| = N , se obtiene

|i2π|N |x− y|N |k(x, y)| ≤
∫
Rn

⟨ξ⟩m−ρN dξ.

La última integral es finita cuando N > (m+ n)/ρ, probando el resultado.

(b) Se observa que el kernel sería una suma finita de funciones continuas, probando la continuidad
de k(x, y). Además, p̃ tendría el mismo soporte de p. Por lo tanto, la última integral anterior
sería finita sin ninguna restricción sobre N .

(c) Sea m < −n. Entonces, se tiene la serie finita

|k(x, y)| ≲
∑
ξ∈Zn

⟨ξ⟩m,

probando la acotación de k(x, y).

(d) Primero se observa que por (a), (b) es suficiente probar la estimación cuando |x− y| < 1 y si
p̃(x, ξ) se anula para |ξ| < 1 uniformemente en x. Sea m+n = 0 y sea φ ∈ C∞

0 (R) con soporte
en [0, 1], tal que

∫
φ = 1, y se define

k(x, y, t) :=

∫
Rn

ei2π(x−y)·ξp̃(x, ξ)φ(⟨ξ⟩ − t) dξ,
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de modo que

k(x, y) =

∫ ∞

1

k(x, y, t) dt.

Luego, usando integración por partes, se tiene que

(i2π)|γ|(x− y)γk(x, y, t) =

∫
Rn

∂γξ

[
ei2π(x−y)·ξ

]
p̃(x, ξ)φ(⟨ξ⟩ − t) dξ

=(−1)|γ|
∫
Rn

ei2π(x−y)·ξ
∑
ω≤γ

Cω∂
ω
ξ p̃(x, ξ)∂

γ−ωφ(⟨ξ⟩ − t) dξ.

Dado que ⟨ξ⟩ ∼ t en el soporte de φ(· − t), que tiene volumen estimado por Ctn−1, se obtiene
para |γ| = N

|x− y|N |k(x, y, t)| ≲
∫
suppφ(·−t)

⟨ξ⟩m−ρN dξ

≲
∫
suppφ(·−t)

tm−ρN dξ ≤ Ctm+n−ρN−1.

Sumando las estimaciones para N = 0, 1, se obtiene

|k(x, y, t)| ≲ t−ρ−1

t−ρ + |x− y|
.

Entonces, el resultado de evaluar la integral anterior es la estimación deseada |k(x, y)| ≤ C| log |x−y||
para x ̸= y.

Ahora, se enuncia un resultado de continuidad en L2(Tn), cuya demostración es muy similar a
la realizada por Hounie en [23].

Teorema 7.1.12. Sea p̃ : Tn × Rn → C un símbolo tal que para 0 < ρ ≤ 1, 0 ≤ δ < 1, m ≤ −nλ y
|α|, |β| ≤ ⌈n/2⌉ satisface: ∣∣∂αξ ∂βx p̃(x, ξ)∣∣ ≤ Cαβ⟨ξ⟩m−ρ|α|+δ|β|. (7.1.6)

Entonces Tp̃ es acotado de L2(Tn) en sí mismo con norma proporcional al las mejores cotas Cαβ.

Teorema 7.1.13. Sea T ∈ Ψm
ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1, m ≤ −n[(1 − ρ)/2 + λ],

entonces T es una aplicación continua

(a) de L2(Tn) en L2/ρ(Tn),

(b) de L2/(2−ρ)(Tn) en L2(Tn).

Demostración. Primero se observa que Jn(1−ρ)/2T y TJn(1−ρ)/2 tienen orden ≤ −nλ, por lo que
son acotados en L2(Tn) por el Teorema 7.1.12. Además, por la desigualdad de Hardy-Littlewood-
Sobolev, se tiene que J−n(1−ρ)/2 es una aplicación continua de L2(Tn) en L2/ρ(Tn) y de L2/(2−ρ)(Tn)
en L2(Tn). Por lo tanto,

∥Tf∥L2/ρ = ∥J−n(1−ρ)/2Jn(1−ρ)/2Tf∥L2/ρ ≲ ∥Jn(1−ρ)/2Tf∥L2 ≲ ∥f∥L2 ,

y
∥Tf∥L2 = ∥TJn(1−ρ)/2J−n(1−ρ)/2f∥L2 ≲ ∥J−n(1−ρ)/2f∥L2 ≲ ∥f∥L2/(2−ρ) .

Por lo tanto, se prueba el resultado deseado.

Teorema 7.1.14. Sea T ∈ Ψm
ρ,δ(Tn ×Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1, con símbolo p := p(x, ξ) y con

kernel k := k(x, y).
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(a) Para cualquier z ∈ Tn fijo, y σ ≥ ε > 0, se tienen las desigualdades para el kernel:

sup
|y−z|≤σ

∫
|x−z|>2σ

|k(x, y)− k(x, z)| dx ≤ Cε, (7.1.7)

sup
|y−z|≤σ

∫
|x−z|>2σ

|k(y, x)− k(z, x)| dx ≤ Cε. (7.1.8)

(b) Si m ≤ −n[(1− ρ)/2 + λ], y σ < 1, se tiene para cualquier z ∈ Tn fijo,

sup
|y−z|≤σ

∫
|x−z|>2σρ

|k(x, y)− k(x, z)|dx ≤ C. (7.1.9)

(c) Si m ≤ −n(1− ρ)/2, y σ < 1, se tiene para cualquier z ∈ Tn fijo,

sup
|y−z|≤σ

∫
|x−z|>2σρ

|k(y, x)− k(z, x)|dx ≤ C. (7.1.10)

Demostración. (a) Primero, se observa que |x − y| ≥ |x − z| − |z − y| > σ en el dominio de
evaluación. Luego, por la desigualdad triangular y (7.1.2) se tiene

sup
|y−z|≤σ

∫
|x−z|>2σ

|k(x, y)− k(x, z)| dx

≤ sup
|y−z|≤σ

∫
|x−z|>2σ

|k(x, y)| dx+ sup
|y−z|≤σ

∫
|x−z|>2σ

|k(x, z)| dx

≲
∫
|x−y|>σ

|x− y|−N dx+

∫
|x−z|>σ

|x− z|−N dx

≤
∫
Tn

σ−N dx+

∫
Tn

σ−N dx ≤ Cε.

(b) Como antes, sea p̃ el símbolo correspondiente en Tn×Rn. Sea φ ∈ C∞
0 (R) con soporte contenido

en [1/2, 1], tal que ∫ ∞

0

φ(1/t)/t dt =

∫ 2

1

φ(1/t)/t dt = 1.

Se define
k(x, y, t) :=

∫
Rn

ei2π(x−y)·ξp̃(x, ξ)φ(⟨ξ⟩/t) dξ,

de modo que

k(x, y) =

∫ ∞

0

k(x, y, t) dt =

∫ ∞

1

k(x, y, t) dt.

Sea N > n/2 un entero, entonces se obtienen las estimaciones por Cauchy-Schwarz∫
|x−z|>2σρ

|k(x, y, t)− k(x, z, t)|dx

≤
[∫

Tn

(1 + t2ρ|x− z|2)N |k(x, y, t)− k(x, z, t)|dx
]1/2 [∫

Tn

(1 + t2ρ|x− z|2)−N dx

]1/2
≲

[∫
Tn

(1 + t2ρ|x− z|2)N |k(x, y, t)− k(x, z, t)|dx
]1/2

t−ρn/2. (7.1.11)
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Así, para |α| ≤ N se tiene que

tρ|α|(x− z)α
∫
Rn

[
ei2π(x−y)·ξ − ei2π(x−z)·ξ

]
p̃(x, ξ)φ(⟨ξ⟩/t) dξ

= tρ|α|(x− z)α
∫
Rn

ei2π(x−z)·ξ
[
ei2π(z−y)·ξ − 1

]
p̃(x, ξ)φ(⟨ξ⟩/t) dξ

=
∑
β≤α

Cαβt
ρ|α|

∫
Rn

ei2π(x−z)·ξ∂βξ

[(
ei2π(z−y)·ξ − 1

)
p̃(x, ξ)

]
∂α−β
ξ φ(⟨ξ⟩/t) dξ.

Ahora, |ei2π(x−z)·ξ − 1| ≤ |x− z||ξ| ≤ tσ en el soporte de φ(⟨ξ⟩/t). Por otro lado,

|∂γξ e
i2π(x−z)·ξ| ≲γ |y − z||γ| ≲γ σ

|γ| ≲ ⟨ξ⟩−|γ|(tσ)|γ|.

Asuma que tσ < 1, entonces para cualquier χ ∈ C∞
0 (Rn), que es igual a uno en el soporte de

φ(⟨ξ⟩/t) el conjunto

Σαβ =
{
⟨ξ⟩n(1−ρ)/2+ρ|β|∂βξ

[(
ei2π(x−z)·ξ − 1

)
p̃(x, ξ)

]
χ(⟨ξ⟩/t) : |y − z| < σ, z ∈ Tn

}
tiene medida acotada por ⟨ξ⟩n(1−ρ)/2+ρ|β|(tσ)⟨ξ⟩m−ρ|β| ≤ tσ⟨ξ⟩−nλ. Así, se puede considerar
p̃(x, ξ) como un símbolo en Rn × Rn y por el Teorema 7.1.9 cada uno de los operadores
correspondientes con símbolos

⟨ξ⟩n(1−ρ)/2+ρ|β|∂βξ

[(
ei2π(x−z)·ξ − 1

)
p̃(x, ξ)

]
χ(⟨ξ⟩/t),

en el conjunto Σαβ son acotados en L2(Rn) con norma estimada por tσ. Por lo tanto, (7.1.11)
puede estimarse usando la identidad de Plancherel mediante

tσ
∑

β≤α, |α|≤N

Cαβt
ρ|α|

∥∥∥⟨ξ⟩−n(1−ρ)/2−ρ|β|t−|α−β|∂α−β
ξ φ(⟨ξ⟩/t)

∥∥∥
L2(Rn)

t−ρn/2

≤ tσtρ|α|t−n(1−ρ)/2−ρ|β|t−|α−β|t−ρn/2 ≤ Ctσ, (7.1.12)

como ⟨ξ⟩ ∼ t en el soporte de la función. Ahora, se elimina la restricción tσ < 1. Para |α| = N
se tiene que ∫

|x−z|>2σρ

|k(x, y, t)|dx

≤
[∫

Tn

(
t2ρ|x− y|2

)N |k(x, y, t)|2 dx
]1/2 [∫

|x−y|>σρ

(
|t2ρ|x− y|2

)−N
dx

]1/2

≲

[∫
Tn

(
t2ρ|x− y|2

)N |k(x, y, t)|2 dx
]1/2

t−ρNσρ(n/2−N). (7.1.13)

Sea |α| = N , entonces

tρ|α|(x− y)α
∫
Rn

ei2π(x−y)·ξp̃(x, ξ)φ(⟨ξ⟩/t) dξ

=
∑
β≤α

Cαβt
ρ|α|

∫
Rn

ei2π(x−y)·ξ∂βξ p̃(x, ξ)t
−|α−β|∂α−β

ξ φ(⟨ξ⟩/t) dξ,

y para cada β ≤ α, la norma L2(Tn) como función de x de∫
Rn

ei2π(x−y)·ξ∂βξ p̃(x, ξ)t
−|α−β|∂α−β

ξ φ(⟨ξ⟩/t) dξ
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es igual a la norma L2(Tn) como función de x de∫
Rn

ei2πx·ξ∂βξ p̃(x+ y, ξ)t−|α−β|∂α−β
ξ φ(⟨ξ⟩/t) dξ.

Por otro lado, el conjunto {⟨ξ⟩n(1−ρ)/2+ρ|β|∂βξ p̃(x + y, ξ) : y ∈ Tn} tiene medida acotada por
⟨ξ⟩n(1−ρ)/2+ρ|β|⟨ξ⟩m−ρ|β| = ⟨ξ⟩n(1−ρ)/2+m, así que sus respectivos operadores son acotados en
L2(Rn) por el Teorema 7.1.9. Por lo tanto, (7.1.13) puede estimarse mediante∑

β≤α, |α|=N

tρ|α|t−n(1−ρ)/2−ρ|β|t−ρ|α−β|tn/2tρNσρ(n/2−N) ≲ (tσ)ρ(n/2−N).

De manera similar, se puede estimar∫
|x−z|>2σρ

|k(x, z, t)|dx ≲ (tσ)ρ(n/2−N).

Usando estas estimaciones y (7.1.12) se obtiene el resultado de la siguiente expresión:∫
|x−z|>2σρ

|k(x, y)− k(x, z)| dx ≲
∫ 1/σ

1

tσ/t dt+

∫ ∞

1/σ

(tσ)ρ(n/2−N)/t dt ≤ C. (7.1.14)

Completando la demostración.

(c) Primero, se observa que
k(y, x, t)− k(z, x, t)

=

∫
Rn

e−i2π(x−y)·ξ[p̃(y, ξ)− p̃(z, ξ)]φ(⟨ξ⟩/t) dξ

+

∫
Rn

e−i2πx·ξ [ei2πy·ξ − ei2πz·ξ
]
p̃(z, ξ)φ(⟨ξ⟩/t) dξ

= f(x− y, y, z, t) + g(x, y, z, t).

Entonces, se obtiene∫
Tn

|g(x, y, z, t)|dx ≲ t−ρn/2

[∫
Tn

|g(x, y, z, t)|2(1 + t2ρ|x|2)N dx

]1/2
≲ t−ρn/2

∑
|α|≤N

[∫
Tn

|(tρx)αg(x, y, z, t)|2 dx
]1/2

.

Se observa que g es la transformada de Fourier en Rn en la primera variable de la función
G(ξ, y, z, t) =

[
ei2πy·ξ − ei2πz·ξ

]
p̃(z, ξ)φ(⟨ξ⟩/t). Además, como antes, |∂γξ (ei2πy·ξ − ei2πz·ξ)| ≤

Ctσ cuando tσ < 1. Por lo tanto, asumiendo tσ < 1 y usando la identidad de Plancherel, se
obtiene∫

Tn

|g(x, y, z, t)|dx ≲ t−ρn/2
∑

|α|≤N

∥∥∂αξ G(ξ, y, z, t)∥∥L2(Rn)

≤ t−ρn/2
∑

β≤α, |α|≤N

∥∥∥∂βξ [(ei2πy·ξ − ei2πz·ξ)p̃(z, ξ)
]
∂α−β
ξ φ(⟨ξ⟩/t)

∥∥∥
L2(Rn)

≲ t−ρn/2
∑

β≤α, |α|≤N

tσtm−ρ|β|t−|α−β|tn/2

≤ tσtn(1−ρ)/2+m ≤ tσ.
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Ahora, se elimina la restricción tσ < 1 y se observa que

g(x, y, z, t) =

∫
Rn

e−i2π(x−z)·ξ
[
ei2π(y−z)·ξ − 1

]
p̃(z, ξ)φ(⟨ξ⟩/t) dξ.

Así, se tiene que∫
Tn

|g(x, y, z, t)|dx ≲ t−ρNσρ(n/2−N)

[∫
Tn

(t2ρ|x− z|2)N |g(x, y, z, t)|2 dx
]
.

Se puede usar la identidad de Plancherel como antes, para obtener∫
Tn

|g(x, y, z, t)|dx ≲ t−ρNσρ(n/2−N)
∑

β≤α, |α|=N

∥∥∥∂βξ [(ei2π(y−z)·ξ − 1)p̃(z, ξ)
]
∂α−β
ξ φ(⟨ξ⟩/t)

∥∥∥
L2(Rn)

≲ t−ρNσρ(n/2−N)
∑

β≤α, |α|=N

t−|α−β|tn/2

≲ (tσ)ρ(n/2−N).

Se pueden usar los mismos procedimientos para encontrar estas cotas para f(x− y, y, z, t) al ob-
servar que

∫
|x−z|>2σρ |f(x−y, y, z, t)|dx ≤

∫
|x|>σρ |f(x, y, z, t)| dx. Entonces la cota deseada proviene

del cálculo en (7.1.14).

Teorema 7.1.15. Sea T ∈ Ψm
ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1, m ≤ −n[(1 − ρ)/2 + λ],

entonces T y su adjunto T ∗ son aplicaciones continuas

(a) del espacio de Hardy H1(Tn) en L1(Tn),

(b) de L∞(Tn) en BMO(Tn).

Demostración. (a) Sea a un átomo deH1(Tn) con soporte en B(z, σ), que satisface ∥a∥L∞ ≤ |B|−1

y la condición de cancelación. Si σ < 1, se define B′ = B(z, 2σρ) y A = Tn \B′. Entonces∫
Tn

|Ta(x)|dx ≤
∫
B′

|Ta(x)|dx+

∫
A

|Ta(x)|dx =: I1 + I2.

Ahora, usando la desigualdad de Cauchy-Schwarz y el Teorema 7.1.13 (b) se obtiene

I1 ≤ ∥χB′∥L2∥Ta∥L2 ≲ σρn/2∥a∥L2/(2−ρ)

≤ σρn/2

[∫
B

|B|−2/(2−ρ) dx

](2−ρ)/2

≤ σρn/2|B|−ρ/2 ≤ C,

y usando el Teorema 7.1.14 (b) se tiene la estimación,

I2 ≤
∫
A

∫
B

|k(x, y)− k(x, z)||a(y)| dy dx ≤ sup
|y−z|<σ

∫
A

|k(x, y)− k(x, z)|dx ≤ C.

Cuando σ ≥ 1, se define B′ = B(z, 2σ) y A = Tn \B′. Entonces se divide la norma L1(Tn) en
I1 + I2 como anteriormente. Ahora se usa el Teorema 7.1.13 (a) para obtener

I1 ≤ ∥χB′∥L2∥Ta∥L2 ≲ σn/2∥a∥L2

≲ σn/2

[∫
B

|B|−2 dx

]1/2
≤ σn/2|B|−1/2 ≤ C,

y se usa el Teorema 7.1.14 (a) para estimar I2.
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(b) Sea B = B(z, σ). Si σ < 1, se define B′ = B(z, 2σρ) y A = Tn \ B′ de modo que se obtiene
f = fχB′ + fχA =: f1 + f2. Ahora, se define b = Tf2(z), que está bien definido, ya que Tf2
es suave en B′. Entonces

1

|B|

∫
B

|Tf(x)− b| dx ≤ 1

|B|

∫
B

|Tf1(x)| dx+
1

|B|

∫
B

|Tf2(x)− b| dx =: I1 + I2.

Por la desigualdad de Hölder y el Teorema 7.1.13 (a) se tienen las desigualdades

I1 ≤ 1

|B|
∥χB′∥L2/(2−ρ) ∥Tf1∥L2/ρ ≲ |B|−ρ/2∥f1∥L2 ≤ |B|−ρ/2

[∫
B′

∥f∥2L∞ dx

]1/2
≲ ∥f∥L∞ ,

y usando el Teorema 7.1.14 (c) se obtiene

I2 ≤ 1

|B|

∫
B

∫
A

|k(x, y)−k(z, y)||f(y)| dy dx ≤ sup
|y−z|<σ

∫
A

|k(x, y)−k(z, y)|∥f∥L∞ dy ≲ ∥f∥L∞ .

Cuando σ ≥ 1, se define B′ = B(z, 2σ) y A = Tn \ B′. Entonces se divide la norma BMO
en I1 + I2 como anteriormente. Ahora se usa la desigualdad de Cauchy-Schwarz y el Teorema
7.1.13 (b) para obtener

I1 ≤ 1

|B|
∥χB∥L2 ∥Tf1∥L2 = |B|−1/2∥Tf1∥L2 ≲ |B|−1/2

[∫
B′

∥f∥2L∞ dx

]1/2
≲ ∥f∥L∞ ,

y se usa el Teorema 7.1.14 (a) para estimar I2. Así, se obtiene la desigualdad

∥Tf∥BMO(Tn) = sup
B

ı́nf
b∈C

1

|B|

∫
B

|Tf(x)− b| dx ≲ ∥f∥L∞(Tn).

Por lo tanto, se completa la demostración para T .
Ahora, se observa que por un argumento de dualidad y en vista del Teorema 5.6.17, se tiene que

también es válido para el adjunto T ∗.

Teorema 7.1.16. Sea T ∈ Ψm
ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1 y

m ≤ −n
[
(1− ρ)

∣∣∣∣1p − 1

2

∣∣∣∣+ λ

]
. (7.1.15)

Entonces T es una aplicación continua de Lp(Tn) en sí mismo.

Demostración. Se puede usar el argumento de interpolación compleja entre (H1(Tn), L1(Tn)) y
(L2(Tn), L2(Tn)) para 1 < p < 2, y entre (L2(Tn), L2(Tn)) y el par (L1(Tn), BMO(Tn)) para
2 < p <∞. De hecho, T es acotado en L2(Tn) si m ≤ −nλ por el Teorema 7.1.12. Por otro lado, si
m ≤ −n[(1− ρ)/2 + λ], entonces T será acotado de H1(Tn) en L1(Tn) y de L∞(Tn) en BMO(Tn).
Entonces T será acotado en Lp(Tn), por el argumento de interpolación de Fefferman-Stein, para

1

p
=

1− θ

q
+
θ

2
,

y 0 < θ < 1, con q = 1 o q = ∞. Lo cual es equivalente a la restricción

m ≤ −nλθ − n [(1− ρ)/2 + λ] (1− θ).

Es decir, que m satisface (7.1.15), completando la demostración.

Se pueden usar las propiedades de los operadores de potencial de Bessel para extender el resultado
de acotación en Lp(Tn) al caso Lp(Tn)-Lq(Tn). En el caso del toro, el siguiente teorema extiende el
resultado de acotación Lp(Tn)-Lq(Tn) en [9] al rango completo 0 < ρ ≤ 1, 0 ≤ δ < 1.
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Teorema 7.1.17. Sea T ∈ Ψm
ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1, entonces T es una aplicación

continua de Lp(Tn) en Lq(Tn) para 1 < p ≤ q <∞, si

(a) 1 < p ≤ 2 ≤ q y

m ≤ −n
(
1

p
− 1

q
+ λ

)
, (7.1.16)

(b) 2 ≤ p ≤ q y

m ≤ −n
[
1

p
− 1

q
+ (1− ρ)

(
1

2
− 1

p

)
+ λ

]
, (7.1.17)

(c) p ≤ q ≤ 2 y

m ≤ −n
[
1

p
− 1

q
+ (1− ρ)

(
1

q
− 1

2

)
+ λ

]
. (7.1.18)

Demostración. (a) Sean m1 = −n(1/p−1/2) y m2 = −n(1/2−1/q). Entonces m ≤ m1+m2−nλ
y J−m2TJ−m1 es acotado en L2(Tn) por el Teorema 7.1.12. Además, por la desigualdad de
Hardy-Littlewood-Sobolev, se obtiene que Jm1 es acotado de Lp(Tn) en L2(Tn) y Jm2 es
acotado de Lq(Tn) en L2(Tn). Por lo tanto,

∥Jm2(J−m2TJ−m1)Jm1f∥Lq ≲ ∥(J−m2TJ−m1)Jm1f∥L2 ≲ ∥Jm1f∥L2 ≲ ∥f∥Lp .

Así, se prueba el resultado.

(b) Sea m′ = −n(1/p − 1/q), de modo que Jm′
es continuo de Lp(Tn) en Lq(Tn) y J−m′

T tiene
orden m−m′ ≤ −n[(1−ρ)(1/2−1/q)+λ] y es una aplicación continua de Lp(Tn) en sí mismo.
Así, se tiene que

∥Jm′
(J−m′

T )f∥Lq ≲ ∥(J−m′
T )f∥Lp ≲ ∥f∥Lp .

Por lo tanto, se obtiene la estimación deseada.

(c) Como anteriormente, se define m′ = −n(1/p− 1/q) de modo que TJ−m′
aplica continuamente

Lq(Tn) en sí mismo y

∥(TJ−m′
)Jm′

f∥Lq ≲ ∥Jm′
f∥Lq ≲ ∥f∥Lp .

Por lo tanto, se completa la demostración.

Además, se tiene que estos operadores pseudo-diferenciales toroidales son de tipo débil (1, 1).
Para ello se demuestra el caso vectorial adaptado del caso euclideano de Álvarez y Milman [3], que
fue extendido al caso toroidal con Cardona en [12].

Teorema 7.1.18. Sea T un operador con kernel valuado en operadores, como en la Definición
5.1.11, que se extiende a un operador acotado de L2(Tn;X) en L2(Tn;Y ) y de Lq(Tn;X) en
L2(Tn;Y ) tal que para algunos α y β:

1

q
=

1

2
+
β

n
; (1− α)

n

2
≤ β <

n

2
. (7.1.19)

También se asume que su kernel k(x, y) satisface la siguiente condición cuando |y − z| < σ∫
|x−z|>cσα

∥k(x, y)− k(x, z)∥B(X,Y ) dx ≤ C, 0 < σ < 1, (7.1.20)

∫
|x− z| > cσ∥k(x, y)− k(x, z)∥B(X,Y ) dx ≤ C, 1 ≤ σ. (7.1.21)

Entonces el operador T se extiende a un operador de tipo débil (1, 1).
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Demostración. Sea f ∈ L1(Tn;X), sea λ > 0 y considere la descomposición de Calderón-Zygmund
a nivel λ. Así

Ω = {x ∈ Tn : Mf(x) > λ} =

∞⋃
j=1

Qj ,

donde M es el operador maximal de Hardy-Littlewood. De modo que se puede definir f = g + b,
aquí fQj es el valor medio de f sobre Qj y

g = fχTn\Ω +

∞∑
j=1

fQjχQj ,

b =

∞∑
j=1

(f − fQj
)χQj

=

∞∑
j=1

bj .

Además,
∥g(x)∥X ≤ Cλ y ∥g∥L1(Tn;X) ≤ ∥f∥L1(Tn;X), (7.1.22)∫
Qj

∥bj(x)∥X dx ≤ C|Qj |λ,
∫
Tn

bj dx = 0, (7.1.23)

|Ω| ≤ C

λ
∥f∥L1(Tn;X).

De (7.1.22) se tiene que g ∈ L2(Tn;X), y también la desigualdad ∥g∥2L2(Tn;X) ≲ λ∥f∥L1(Tn;X).
Entonces, usando la desigualdad de Chebyshev y la acotación L2 de T se obtiene

λ2|{x ∈ Tn : ∥Tg(x)∥Y > λ/2}| ≲ ∥Tg∥2L2(Tn;Y ) ≲ ∥g∥2L2(Tn;X) ≲ λ∥f∥L1(Tn;X).

Por otro lado, si se establece cΩ como la unión de los cubos cQj con el mismo centro y longitud de
lado escalada, se obtiene

|{x ∈ cΩ : ∥Tb(x)∥Y > λ/2}| ≤ |cΩ| ≲ 1

λ
∥f∥L1(Tn;X).

Sea σj el diámetro de Qj y
F =

∑
σj<1

bj , G =
∑
σj≥1

bj ,

entonces para un c > 0 adecuado y Qj , centrados en zj , se obtiene |x−zj | > 4σj , cuando x ∈ Tn\cΩ.
Usando la desigualdad de Chebyshev y (7.1.23) se obtiene por (7.1.21) las siguientes estimaciones

λ|{x ∈ Tn \ cΩ : ∥TG(x)∥Y > λ/4}|

≲
∫
Tn\cΩ

∥TG(x)∥Y dx

≲
∑
σj≥1

∫
|x−zj |>4σj

∫
Qj

∥k(x, y)− k(x, zj)∥B∥bj(y)∥X dy dx

≲
∑
σj≥1

∫
Qj

∥bj(y)∥X dy ≲ ∥f∥L1(Tn;X).

Ahora, sea φ una función test soportada en {x ∈ Tn : |x| ≤ 1/c} y tal que
∫
φ(x) dx = 1 con φ ≥ 0.

Defínase

φj(x) =
1

σ
n/α
j

φ

(
x

σ
1/α
j

)
.

Se escribe
F =

∑
σj<1

bj ∗ φj +
∑
σj<1

(bj − bj ∗ φj) = F ′ + F ′′.
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Entonces, para x ∈ Tn \ cΩ, se tiene que

T (bj − bj ∗ φj)(x) =

∫
Tn

k(x, y)bj(y) dy −
∫
Tn

k(x,w)

∫
Tn

φj(w − y)bj(y) dy dw

=

∫
Tn

[∫
Tn

[k(x, y)− k(x,w)]φj(w − y) dw

]
bj(y) dy.

Por lo tanto, usando la desigualdad de Chebyshev se obtiene

λ|{x ∈ Tn \ cΩ : ∥TF ′′(x)∥Y > λ/8}| (7.1.24)

≲
∫
Tn\cΩ

∥TF ′′(x)∥Y dx

≲
∑
σj<1

∫
Tn

[∫
Tn

∥k(x, y)− k(x,w)∥B(X,Y )φj(w − y) dw

]
∥bj(y)∥X dy.

Cuando x ∈ Tn \ cΩ y |y − w| < σ
1/α
j se tiene que

|x− w| ≥ |x− zj | − |zj − y| − |y − w| > 4σj − σj − σ
1/α
j > 2σj .

Así que se puede estimar (7.1.24) por

∑
σj<1

∫
Qj

[∫
|w−y|<σ

1/α
j

∫
|x−w|>2σj

∥k(x, y)− k(x,w)∥B(X,Y ) dx dw

]
∥bj(y)∥X dy

≲
∑
σj<1

∫
Qj

∥bj(y)∥X dy ≤ C∥f∥L1(Tn;X).

Ahora, solo queda probar la desigualdad

λ|{x ∈ Tn \ cΩ : ∥TF ′(x)∥Y > λ/8}| ≤ C∥f∥L1(Tn;X),

lo cual se probaría si se obtiene la estimación

∥J−βF ′∥2L2(Tn;X) ≤ Aλ∥f∥L1(Tn;X), (7.1.25)

donde J es el potencial de Bessel de orden uno. Dado que β satisface (7.1.19) se tiene que TJβ es
acotado en L2(Tn;Y ) y

∥TF ′∥2L2(Tn;Y ) = ∥TJβJ−βF ′∥2L2(Tn;Y ) ≲ ∥J−βF ′∥2L2(Tn;X) ≲ λ∥f∥L1(Tn;X).

Por lo tanto, se puede usar la desigualdad de Chebyshev para obtener

λ2|{x ∈ Tn \ cΩ : ∥TF ′(x)∥Y > λ/8}| ≲
∫
Tn\cΩ

∥TF ′(x)∥2Y dx ≲ λ∥f∥L1(Tn;X).

Recuerde que
F ′ =

∑
σj<1

fχQj ∗ φj −
∑
σj<1

fQjχQj ∗ φj .

Se define x ∼ Qj si x pertenece a la clausura de cualquier cubo Qk adyacente a Qj . Así,

J−β
∑
σj<1

fχQj
∗ φj(x) =

∑
x∼Qj

J−β(fχQj
∗ φj)(x) +

∑
x≁Qj

J−β(fχQj
∗ φj)(x) = F1(x) + F2(x).

De modo que
(J−βF ′)(x) = F1(x) + F2(x)−

∑
σj<1

fQj
J−β(χQj

∗ φj)(x).
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Usando la prueba de Fefferman adaptada a grupos de Lie compactos [14], se tiene que para x ≁ Qj∥∥J−β(fχQj
∗ φj)(x)

∥∥
X

≲ J−β∥fQj
∥X(χQj

∗ φj)(x).

Por (7.1.23) y el hecho de que J−β mapea funciones positivas en funciones positivas se tiene que∥∥∥∥∥∥F2(x)−
∑
σj<1

fQj
J−β(χQj

∗ φj)(x)

∥∥∥∥∥∥
X

=

∥∥∥∥∥∥
∑
σj<1

J−β [(fχQj
− fQj

χQj
) ∗ φj ](x)

∥∥∥∥∥∥
X

≤

∥∥∥∥∥∥
∑
σj<1

J−β(bj ∗ φj)(x)

∥∥∥∥∥∥
X

≲ λ
∑
σj<1

J−β(χQj ∗ φj)(x)

≲ λ∥J−β∥1

∥∥∥∥∥∥
∑
σj<1

χQj ∗ φj

∥∥∥∥∥∥
L∞(Tn;X)

≲ λ,

ya que los soportes de χQj
∗ φj tienen superposición finita. Por otro lado,∥∥∥∥∥∥F2 −

∑
σj<1

J−βfQjχQj ∗ φj

∥∥∥∥∥∥
L1(Tn;X)

≤
∑
σj<1

∥∥J−β [φj ∗ (f − fQj )χQj ]
∥∥
L1(Tn;X)

≲
∑
σj<1

∫
Qj

∥f(y)∥X dy ≲ ∥f∥L1(Tn;X).

Combinando estas dos estimaciones se obtiene∥∥∥∥∥∥F2 −
∑
σj<1

J−βfQj
χQj

∗ φj

∥∥∥∥∥∥
2

L2(Tn;X)

≤ Cλ∥f∥L1(Tn;X).

Ahora solo queda probar la desigualdad ∥F1∥2L2(Tn;X) ≲ λ∥f∥L1(Tn;X), lo cual puede hacerse como
en la prueba de Fefferman, [14]. Para un x ∈ Tn fijo, sea

F j
1 (x) =

{
J−βfχQj ∗ φj(x) si x ≁ Qj

0 si no.

Así, F1(x) =
∑

σj<1 F
j
1 (x) y F j

1 (x) ̸= 0 para a lo sumo N valores. Entonces,

∥F1(x)∥2Y ≤

 N∑
j=1

∥∥∥F j(x)
1 (x)

∥∥∥
Y

2

≤
N∑

j,h=1

∥∥∥F j(x)
1 (x)

∥∥∥
Y

∥∥∥Fh(x)
1 (x)

∥∥∥
Y

≤2

 N∑
j,h=1

∥∥∥F j(x)
1 (x)

∥∥∥2
Y
+
∥∥∥Fh(x)

1 (x)
∥∥∥2
Y


≤4N

∑
σj<1

∥∥∥F j
1 (x)

∥∥∥2
Y
.
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Por lo tanto, usando la desigualdad de Hausdorff-Young se tiene que

∥F1∥2L2(Tn;X) ≤ 4N
∑
σj<1

∥∥∥F j
1

∥∥∥2
L2(Tn;X)

≤ 4N
∑
σj<1

∥∥J−βφj

∥∥2
L2(Tn;X)

∥∥fχQj

∥∥2
L1(Tn;X)

.

Por otro lado, por la identidad de Plancherel y dado que −2β < −n se obtiene∥∥J−βφj

∥∥2
L2(Tn;X)

=
∑
ξ∈Zn

⟨ξ⟩−2β
∣∣∣(FTnφ)

(
σ
1/α
j ξ

)∣∣∣2 ≲
1

|Qj |
,

ya que |Qj | ≤ 1. Finalmente

∥F1∥2L2(Tn;X) ≲
∑
σj<1

1

|Qj |
∥fχQj∥2L1(Tn;X) ≲ λ∥f∥L1(Tn;X).

Así, se completa la prueba.

Teorema 7.1.19. Sea T ∈ Ψm
ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1, m ≤ −n[(1 − ρ)/2 + λ],

entonces T es del tipo débil (1, 1).

Demostración. Note que por el Teorema 7.1.12 se puede tomar q como 2/(2 − ρ) en la hipótesis
del Teorema 7.1.18. Además, tomar α como ρ y β como n(1 − ρ)/2 satisface la condición (7.1.19).
Entonces, en vista del Teorema 7.1.14 se obtienen las condiciones necesarias para el resultado

7.1.2. Continuidad de operadores pseudo-diferenciales en espacios de Le-
besgue pesados Lp(w)

Ahora, se presentan los resultados de continuidad de operadores pseudo-difernciales toroidales
para espacios de Lebesgue pesados Lp(w), obtenidos con Cardona en [11]. Estos extienden el caso
euclideano demostrado por Park y Tomita [29].

Sea φ una función de Schwartz definida en Rn tal que su transformada de Fourier φ̂ es igual a
uno en la bola unitaria centrada en el origen y tiene soporte en la bola concéntrica de radio 2. Sea
ψ otra función test tal que ψ̂(ξ) := φ̂(ξ)− φ̂(2ξ) para ξ ∈ Rn. Para cada k ∈ N, se define

ψk(x) := 2knψ(2kx).

Entonces se tiene una partición de la unidad de Littlewood-Paley no homogénea formada por φ y
ψk, con k ∈ N. Además, note que

supp ψ̂k ⊂
{
ξ ∈ Rn : 2k−1 ≤ |ξ| ≤ 2k+1

}
y que

φ̂(ξ) +
∑
k∈N

ψ̂k(ξ) = 1.

Así, se puede descomponer cualquier σ ∈ Sm
ρ,ρ(Tn × Zn) como

σ(x, ξ) = σ(x, ξ)φ̂(ξ) +
∑
k∈N

σ(x, ξ)ψ̂k(ξ) =: σ0(x, ξ) +
∑
k∈N

σk(x, ξ),

por lo que se puede escribir
Tσ =

∑
k∈N0

Tσk
,

donde Tσk
son los operadores pseudo-diferenciales toroidales asociados con σk ∈ Sm

ρ,ρ(Tn × Zn).
Ahora, se escriben sus kernels correspondientes (en el sentido de distribuciones) como

Kk(y, u) :=
∑
ξ∈Zn

σk(y, ξ)e
i2πu·ξ. (7.1.26)

Además, sea σ̃k la extensión del símbolo σk definida en Tn×Rn. Primero, se demuestran las siguientes
estimaciones del kernel.
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Lema 7.1.20. Sea 0 < ρ ≤ 1 y m ∈ R. Suponga que σ ∈ Sm
ρ,ρ(Tn × Zn) y sea Kk definido como en

(7.1.26). Para N ≥ 0 arbitrario, y 1 ≤ r ≤ 2, se tiene que∥∥(1 + 2kρ|u|)NKk(y, u)
∥∥
Lr′ ≲N 2k(m+n/r),∥∥(1 + 2kρ|u|)N∇yKk(y, u)
∥∥
Lr′ ≲N 2k(ρ+m+n/r),∥∥(1 + 2kρ|u|)N∇uKk(y, u)
∥∥
Lr′ ≲N 2k(1+m+n/r),

como funciones de u ∈ Rn, uniformemente en y ∈ Rn.

Demostración. Se sigue el argumento de Park y Tomita [29]. Dado que σ̃k ∈ Sm
ρ,ρ(Tn×Rn), entonces

para cualquier multi-índice β ∈ Nn
0 se tiene que∣∣∣∂βξ σ̃k(y, ξ)∣∣∣ ≲ 2k(m−ρ|β|), (7.1.27)∣∣∣∂βξ ∇yσ̃k(y, ξ)

∣∣∣ ≲ 2k(m+ρ−ρ|β|), (7.1.28)∣∣∣∂βξ [ξσ̃k(y, ξ)]∣∣∣ ≤ ∣∣∣ξ · ∂βξ σ̃k(y, ξ)∣∣∣+ n∑
j=1

∣∣∣∂β−j
ξ σ̃k(y, ξ)

∣∣∣ ≲ 2k(m+1−ρ|β|), (7.1.29)

ya que ⟨ξ⟩ ∼ 2k. Ahora, se usa la desigualdad de Hausdorff-Young y (7.1.27)para obtener que∥∥(2kρu)βKk(y, u)
∥∥
Lr′ ≲ 2kρ|β|

∥∥∥∂βξ σ̃k(x, ξ)∥∥∥
Lr

= 2kρ|β|2k(m−ρ|β|)2kn/r

= 2k(m+n/r),

ya que el volumen del soporte de σ̃k es comparable con 2kn. Además, aquí la norma Lr′ se toma con
respecto a u ∈ Rn y la norma Lr se toma con respecto a ξ ∈ Rn. Esto concluye la demostración de
la primera estimación, las estimaciones restantes pueden probarse usando el mismo procedimiento y
las estimaciones (7.1.28) y (7.1.29) respectivamente.

Ahora, se demuestran algunos lemas de acotamiento útiles.

Lema 7.1.21. Sea 1 < r ≤ 2, sea 0 < ρ ≤ r/2, sea 0 < ρ < 1, y sea m = −n(1 − ρ)/r. Entonces
para todo σ ∈ Sm

ρ,ρ(Tn × Zn), su operador correspondiente Tσ es continuo de Lr en Lr/ρ.

Demostración. Note que se tiene r ≤ 2 ≤ r/ρ y m satisface las condiciones del Teorema 7.1.17.

Para manejar el caso ρ > r/2 que no se considera en el lema anterior, se demuestra lo siguiente.

Lema 7.1.22. Sea 1 < r < 2, sea r/2 ≤ ρ < 1, y sea m = −n(1− ρ)/r. Suponga que k ∈ N0 y

2ρ− r

2− r
< λ < ρ.

Entonces todo σ ∈ Sm
ρ,ρ(Tn × Zn) satisface

∥Tσk
f∥

L
r(1−λ)
ρ−λ

≲ 2λnk
1−ρ

r(1−λ) ∥f∥Lr

para f ∈ C∞(Tn).
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Demostración. Se usa la estrategia de Park y Tomita [29]. Se define

ak(x, ξ) := σ̃k(2
−λkx, 2λkξ).

Entonces para cualquier multi-índices α, β ∈ Nn
0 , se obtiene que

|∂αx ∂
β
ξ ak(x, ξ)| = 2λk(|β|−|α|)|∂αx ∂

β
ξ σ̃k(2

−λkx, 2λkξ)|

≲ 2λk(|β|−|α|)2k(m−ρ(|β|−|α|))χ{⟨ξ⟩∼2(1−λ)k}

= 2k[m−(ρ−λ)(|β|−|α|)]χ{⟨ξ⟩∼2(1−λ)k}

≲ ⟨ξ⟩
m

1−λ− ρ−λ
1−λ (|β|−|α|),

donde la constante es independiente de k. Por lo tanto, se tiene que

ak ∈ S
m

1−λ
ρ−λ
1−λ , ρ−λ

1−λ

(Tn × Rn)

uniformemente en k. Note que

0 <
ρ− λ

1− λ
<
r

2
y

m

1− λ
= −n

r

(
1− ρ− λ

1− λ

)
,

lo que permite emplear el Lema 7.1.21, y obtener la continuidad Lr-L
r(1−λ)
ρ−λ para los operadores Tak

uniformemente en k. Dado que se tiene que

Tσk
f(x) = Tak

(f(2−λk·))(2λkx),

se puede obtener que

∥Tσk
f∥

L
r(1−λ)
ρ−λ

= 2−λnk ρ−λ
r(1−λ) ∥Tak

(f(2−λk·))∥
L

r(1−λ)
ρ−λ

≲ 2−λnk ρ−λ
r(1−λ) ∥f(2−λk·)∥Lr

= 2−λnk ρ−λ
r(1−λ) 2λnk/r∥f∥Lr

= 2λnk
1−ρ

r(1−λ) ∥f∥Lr .

Así, completando la demostración.

Ahora, sea P una dilatación concéntrica de Q con ℓ(P ) ≥ 10
√
nℓ(Q) y sea χP su función carac-

terística. Ahora, se considera
f = fχP

+ fχTn\P =: f0 + f1, (7.1.30)

de modo que
Tσk

f = Tσk
f0 + Tσk

f1.

Proposición 7.1.23. Sea 0 < ρ < 1, sea 1 < r ≤ 2, y sea m = −n(1− ρ)/r. Suponga que x ∈ Q.

1. Sea 0 < ρ < r/2, y sea k ∈ N0. Entonces todo símbolo σ ∈ Sm
ρ,ρ(Tn × Zn) satisface(

1

|Q|

∫
Q

|Tσk
f0(y)|r dy

)1/r

≲

[
ℓ(P )

ℓ(Q)ρ

]n/r
Mrf(x). (7.1.31)

2. Sea r/2 ≤ ρ < 1, sea 2ρ−r
2−r < λ < ρ, y sea k ∈ N0. Entonces todo símbolo σ ∈ Sm

ρ,ρ(Tn × Zn)
satisface (

1

|Q|

∫
Q

|Tσk
f0(y)|r dy

)1/r

≲ [2kℓ(Q)]λn
1−ρ

r(1−λ)

[
ℓ(P )

ℓ(Q)ρ

]n/r
Mrf(x). (7.1.32)
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Demostración. Primero, se considera el caso 0 < ρ < r/2. Por la desigualdad de Hölder y el Lema
7.1.21 se tiene que (

1

|Q|

∫
Q

|Tσk
f0(y)| dy

)1/r

≤ 1

|Q|ρ/r
∥Tσk

f0∥Lr/ρ

≲
1

ℓ(Q)nρ/r
∥fχP ∥Lr

≲

[
ℓ(P )

ℓ(Q)ρ

]n/r
Mrf(x),

ya que x ∈ Q ⊂ P . Por lo tanto, probando (7.1.31). Ahora, se asume que r/2 ≤ ρ < 1. Por la
desigualdad de Hölder y (7.1.22) se obtiene que(

1

|Q|

∫
Q

|Tσk
f0(y)|dy

)1/r

≤ |Q|−
ρ−λ

r(1−λ) ∥Tσk
f0∥

L
r(1−λ)
ρ−λ

≲ ℓ(Q)−n ρ−λ
r(1−λ) 2λnk

1−ρ
r(1−λ) ∥fχP ∥Lr

≲ 2λnk
1−ρ

r(1−λ) ℓ(Q)−n ρ−λ
r(1−λ) ℓ(P )n/rMrf(x)

≲ [2kℓ(Q)]λn
1−ρ

n(1−λ)

[
ℓ(P )

ℓ(Q)ρ

]n/r
Mrf(x).

Así, completando la demostración.

Ahora se demuestran estimaciones para la segunda parte de la descomposición como en (7.1.30).

Proposición 7.1.24. Sea 0 ≤ ρ < 1, sea 1 ≤ r ≤ 2, sea m = −n(1− ρ)/r, y k ∈ N0. Suponga que
x, y ∈ Q. Entonces todo σ ∈ Sm

ρ,ρ(Tn × Zn) satisface

|Tσk
f1(y)| ≲N [2kρℓ(P )]−(N−n/r)Mrf(x), (7.1.33)

y
|Tσk

f1(y)− Tσk
f1(x)| ≲N 2kℓ(Q)[2kρℓ(P )]−(N−n/r)Mrf(x), (7.1.34)

para cualquier N > n/r.

Demostración. Primero, se considera (7.1.33). Sea N > n/r, y sea y ∈ Q. Por la desigualdad de
Hölder se obtiene que

|Tσk
f1(y)| ≤

∫
Tn\P

|Kk(y, y − u)||f(u)| du

≤

∥∥∥∥∥ℓ(P )n/r
[
| · |
ℓ(P )

]N
Kk(y, ·)

∥∥∥∥∥
Lr′

∥∥∥∥∥ℓ(P )−n/r

[
|y − ·|
ℓ(P )

]−N

fχTn\P

∥∥∥∥∥
Lr

.

La norma Lr′ puede estimarse usando Lema 7.1.20 por∥∥∥∥∥ℓ(P )n/r
[
| · |
ℓ(P )

]N
Kk(y, ·)

∥∥∥∥∥
Lr′

= ℓ(P )−(N−n/r)
∥∥| · |NKk(y, ·)

∥∥
Lr′

≤ ℓ(P )−(N−n/r)2−kρN
∥∥(1 + 2kρ| · |)NKk(y, ·)

∥∥
Lr′

≲ ℓ(P )−(N−n/r)2−kρN2k(m+n/r)

= [2kρℓ(P )]−(N−n/r).

Por otro lado, la norma Lr puede estimarse notando que para x, y ∈ Q, y para u ∈ Tn \ P , se tiene
que

|y − u| ≥ |x− u| − |x− y| ≥ Cn[ℓ(P ) + |x− u|].
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Así, para N > n/r, se obtiene que∥∥∥∥∥ℓ(P )−n/r

[
|y − ·|
ℓ(P )

]−N

fχTn\P

∥∥∥∥∥
Lr

≲

(∫
Tn

ℓ(P )−n

[
1 +

|x− u|
ℓ(P )

]−rN

|f(u)|r du

)1/r

≲ Mrf(x).

Así, se combinan ambas estimaciones para obtener (7.1.33). Ahora, se considera (7.1.34) usando una
demostración similar al caso anterior, definiendo ahora

Hk(y, x, u) := Kk(y, y − u)−Kk(x, x− u).

Asuma x, y ∈ Q y N > n/r. Usando la desigualdad de Hölder, se tiene que

|Tσk
f1(y)− Tσk

f1(x)| ≤
∫
Tn\P

|Hk(y, x, u)||f(y)|du

≤

∥∥∥∥∥ℓ(P )n/r
[
|y − ·|
ℓ(P )

]N
Hk(y, x, ·)χTn\P

∥∥∥∥∥
Lr′

∥∥∥∥∥ℓ(P )−n/r

[
|y − ·|
ℓ(P )

]−N

fχTn\P

∥∥∥∥∥
Lr

.

Se estima el primer factor usando el Lema 7.1.20 por∥∥∥∥∥ℓ(P )n/r
[
|y − ·|
ℓ(P )

]N
Hk(y, x, ·)χTn\P

∥∥∥∥∥
Lr′

≲

∥∥∥∥∥ℓ(Q)ℓ(P )n/r
[
|y − ·|
ℓ(P )

]N ∫ 1

0

|∇Kk(y(t), y(t)− ·)|dtχTn\P

∥∥∥∥∥
Lr′

≲ ℓ(Q)ℓ(P )−(N−n/r)

∫ 1

0

∥∥|y(t)− ·|N |∇Kk(y(t), y(t)− ·)|
∥∥
Lr′ dt

≲ ℓ(Q)ℓ(P )−(N−n/r)2−kρN

∫ 1

0

∥∥(1 + 2kρ| · |)N |∇Kk(y(t), ·)|
∥∥
Lr′ dt

≲ ℓ(Q)ℓ(P )−(N−n/r)2−kρN2k(1+m+n/r) = C2kℓ(Q)[2kρℓ(P )]−(N−n/r),

donde y(t) := ty + (1− t)x ∈ Q de modo que |y − x| ≲ |y(t)− u| para u ∈ Tn \ P . Para el segundo
factor, se usa la misma estimación que en el caso anterior, completando la demostración.

Se procede a demostrar el teorema principal de esta sección, del cual se seguirá la continuidad
deseada.

Teorema 7.1.25. Sea 1 < r ≤ 2, y sea 0 < ρ < 1. Suponga que m ≤ −n(1−ρ)/r y σ ∈ Sm
ρ,ρ(Tn×Zn).

Entonces se tiene que
M#

r (Tσf)(x) ≲ Mrf(x)

para f ∈ C∞(Tn).

Demostración. Note que es suficiente probar

ı́nf
cQ∈C

(
1

|Q|

∫
Q

|Tσf(y)− cQ|r dy
)1/r

≲ Mrf(x), (7.1.35)

uniformemente en Q y x ∈ Tn. Ahora, sea Pρ una dilatación concéntrica de Q tal que ℓ(Pρ) =
10
√
nℓ(Q)ρ y se descompone f como en (7.1.30). Primero se considerará el caso cuando 0 < ρ < r/2.

Entonces, el lado izquierdo de (7.1.35) es menor que la suma de

I0 :=

(
1

|Q|

∫
Q

|Tσf0(y)|r dy
)1/r
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y

I1 := ı́nf
cQ∈C

(
1

|Q|

∫
Q

|Tσf1 − cQ|r
)1/r

.

Usando la desigualdad de Hölder y el Lema 7.1.21 se puede verificar que

I0 ≤ 1

|Q|ρ/r
∥Tσf0∥Lr/ρ ≲

1

ℓ(Q)nρ/r
∥fχPρ∥Lr ≲ Mrf(x).

Para estimar I1, se establece
cQ :=

∑
k:2kℓ(Q)<1

Tσk
f1(x), (7.1.36)

por lo que se tiene que

|Tσf1(y)− cQ| ≤
∑

k:2kℓ(Q)≥1

|Tσk
f1(y)|+

∑
k:2kℓ(Q)<1

|Tσk
f1(y)− Tσk

f1(x)|.

Primero, se estima la primera suma usando (7.1.33) por∑
k:2kℓ(Q)≥1

|Tσk
f1(y)| ≲

∑
k:2kℓ(Q)≥1

[2kℓ(Q)]−ρ(N−n/r)Mrf(x) ≲ Mrf(x),

ya que ρ > 0 y N > n/r. Luego, se aplica (7.1.34) para estimar los términos restantes por∑
k:2kℓ(Q)<1

|Tσk
f1(y)− Tσk

f1(x)| ≲N

∑
k:2kℓ(Q)<1

[2kℓ(Q)]1−ρ(N−n/r)Mrf(x) = CMrf(x),

cuando se elige N < n/r + 1/ρ. Así, completando la demostración cuando 0 < ρ < r/2. Ahora, se
considera el caso r/2 ≤ ρ < 1. Se puede estimar (7.1.35) por la suma de

J1 := ı́nf
cQ∈C

 1

|Q|

∫
Q

∣∣∣∣∣∣
∑

k:2kℓ(Q)<1

Tσk
f(y)− cQ

∣∣∣∣∣∣
r

dy

1/r

,

J2 :=
∑

k:2kℓ(Q)≥1,

2ρkℓ(Q)<1

(
1

|Q|

∫
Q

|Tσk
f(y)|r dy

)1/r

,

J3 :=
∑

k:2ρkℓ(Q)≥1

(
1

|Q|

∫
Q

|Tσk
f(y)|r dy

)1/r

.

Primero, se establece 2ρ−r
2−r < λ < ρ para el resto de esta demostración. Luego, se usa la misma

descomposición por Pρ como arriba y se usa cQ como se define en (7.1.36) para estimar J1 por

∑
k:2kℓ(Q)<1

[(
1

|Q|

∫
Q

|Tσk
f0(y)|r dy

)1/r

+

(
1

|Q|

∫
Q

|Tσk
f1(y)− Tσk

f1(x)|r dy
)1/r

]
.

Usando (7.1.32) se obtiene que(
1

|Q|

∫
Q

|Tσk
f0(y)|r dy

)1/r

≲ [2kℓ(Q)]λn
1−ρ

r(1−λ)Mrf(x).

Además, se emplea (7.1.34) para obtener que

|Tσk
f1(y)− Tσk

f1(x)| ≲ [2kℓ(Q)]1−ρ(N−n/r)Mrf(x).
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De nuevo, se elige N < n/r+1/ρ, para obtener una cota uniforme y completar la demostración para
el primer término. Para el término J2, se elige un número positivo ε tal que

λ

(
1− ρ

1− λ

)
< ε < ρ,

que se sabe existe ya que λ < ρ. Ahora, se define Pε,k como la dilatación concéntrica de Q con
ℓ(Pε,k) = 10

√
nℓ(Q)ρ[2kℓ(Q)]−ε. Note que

10
√
nℓ(Q) ≤ ℓ(Pε,k),

ya que es equivalente a
2ρkℓ(Q)

ρ(1−ρ+ε)
ε ≤ 1,

lo cual es cierto ya que

ρ(1− ρ) ≥ ε(1− ρ)

ρ(1− ρ+ ε)

ε
≥ 1,

y 2ρkℓ(Q) < 1. Entonces, se considera

f = fχPε,k
+ fχTn\Pε,k

=: f0,k + f1,k.

Por lo tanto, por (7.1.32) se tiene que(
1

|Q|

∫
Q

|Tσk
f0,k(y)|r dy

)1/r

≲ [2kℓ(Q)]λn
1−ρ

r(1−λ)

[
ℓ(Pε,k)

ℓ(Q)ρ

]n/r
Mrf(x)

= [2kℓ(Q)]−
n
r (ε−λ 1−ρ

1−λ )Mrf(x).

Además, por (7.1.33) se obtiene que

|Tσk
f1,k(y)| ≲ [2kρℓ(Pε,k)]Mrf(x)

≲
(
2kρℓ(Q)ρ[2kℓ(Q)]−ε

)−(N−n/r)
Mrf(x)

≤ [2kℓ(Q)]−(ρ−ε)(N−n/r)Mrf(x),

dondeN > n/r. Por lo tanto, se tiene una cota uniforme para el segundo término. Ahora, se considera
J3. Para este caso se usará P como la dilatación concéntrica de Q tal que ℓ(P ) = 10

√
nℓ(Q), y se usa

la misma descomposición que en (7.1.30). Note que dado que ⟨ξ⟩ ∼ 2k en el soporte de σk, entonces
se tiene que

2
kn
2 (1−ρ)σk ∈ S−n(1−ρ)(1/r−1/2)

ρ,ρ (Tn × Zn),

uniformemente en k. Por lo tanto, el Teorema 7.1.16 implica la acotación Lr para cada Tσk
, y se

obtiene que (
1

|Q|

∫
Q

|Tσk
f0(y)|r dy

)1/r

≤ 1

|Q|1/r
∥Tσk

f0(y)∥Lr

≲ 2−
kn
2 (1−ρ) 1

ℓ(Q)n/r
∥fχP ∥Lr

≲ 2−
kn
2 (1−ρ)Mrf(x).

Por otro lado, se emplea (7.1.33) para obtener que

|Tσk
f1(y)| ≲ [2kρℓ(Q)]−(N−n/r)Mrf(x),

donde N > n/r. Por lo tanto se concluye que J3 ≲ Mrf(x), y se completa la demostración.
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Ahora, se aprovecha el Corolario 5.1.33 y el Teorema 7.1.25 para obtener el siguiente resultado
de continuidad.

Corolario 7.1.26. Sea 0 ≤ δ ≤ ρ < 1, sea 0 < ρ < 1, sea 1 < r ≤ 2, y sea r ≤ p <∞. Suponga que
m ≤ −n(1− ρ)/r y σ ∈ Sm

ρ,δ(Tn × Zn). Si w ∈ Ap/r, entonces

∥Tσf∥Lp(w) ≲ ∥f∥Lp(w),

para cualquier f ∈ C∞(Tn).

Demostración. Primero, se considera el caso p > r. Por lo tanto, se obtiene que

∥Tσf∥Lp(w) ≲ ∥M#
r (Tσf)∥Lp(w) ≲ ∥Mrf∥Lp(w) ≲ ∥f∥Lp(w).

Ahora, se considera el caso p = r. Entonces, en vista del Corolario 5.1.37, para w ∈ A1 se sabe que
existe ε > 0 tal que

w1+ε ∈ A1.

Para cualquier r < q0 < ∞, la teoría de encaje para pesos Ap implica que w1+ε ∈ Aq0/r, y por un
argumento similar al anterior se concluye que

∥Tσf∥Lq0 (w1+ε) ≲ ∥f∥Lq0 (w1+ε).

Además, del Teorema 7.1.16 se tiene que

∥Tσf∥Lq1 ≲ ∥f∥Lq1 ,

para cualquier 1 < q1 < r, porque m ≤ −n(1 − ρ)(1/q1 − 1/2). El resultado deseado se sigue del
argumento de interpolación como en el Teorema 5.7.8.

7.2. Continuidad en espacios de Sobolev
Primero, se revisita la definición de espacios de Sobolev utilizando los operadores pseudo-diferenciales

que han sido definidos en apartados anteriores.

Definición 7.2.1 (Espacios de Sobolev). Sea s ∈ R, entonces se dice que f pertenece al espacio
de Sobolev W s

p (Rn), si Jsf ∈ Lp(Rn), donde 1 ≤ p ≤ ∞ y Js es el potencial de Bessel de orden s.
Además, se define la norma

∥f∥W s
p
:= ∥Jsf∥Lp .

Ahora, se extiende el resultado del Teorema 7.1.4 para estos espacios.

Teorema 7.2.2. Sea T ∈ Ψm
1,0(Rn × Rn) sea un operador pesudo-diferencial de orden m ∈ R.

Entonces, el operador T se extiende a un operador continuo desde el espacio de Sobolev W s−m
p (Rn)

hacia W s
p (Rn), con 1 < p <∞.

Demostración. Note que Js−mTJ−s es un operador de orden cero, por lo que es continuo en Lp, en
vista del Teorema 7.1.4. Por lo que se tiene que

∥f∥W s−m
p

= ∥Js−mTf∥Lp = ∥Js−mTJ−sJsf∥Lp ≲ ∥Jsf∥Lp = ∥f∥W s
p
.

Completando la prueba.

Ahora, se demuestra que la definición revisitada de espacios de Sobolev coincide con la definición
para regularidad entera que se dio anteriormente.

Teorema 7.2.3. El espacio W s
p (Rn) coincide con el espacio W k

p (Rn), para 1 < p < ∞, cuando
s = k es entero, con equivalencia de normas.
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Demostración. Se utilizará k para simplificar la notación. Para |α| ≤ k, se tiene que ∂αx J−k es un
operador pseudo-diferencial con símbolo (2πiξ)α⟨ξ⟩−k, y orden |α|−k ≤ 0. Entonces, por el Teorema
7.1.4 se puede concluir que son acotados en Lp, y que∑

|α|≤k

∥∂αx f∥Lp =
∑
|α|≤k

∥∂αx J−kJkf∥Lp ≲ ∥Jkf∥Lp = ∥f∥Wk
p
.

Por otra parte, se tiene que el operador con símbolo

⟨ξ⟩k

pk(ξ)
:= ⟨ξ⟩k

∑
|α|≤k

ξα

−1

≤ C <∞,

es acotado en Lp. Por lo que

∥f∥Wk
p
= ∥Jkf∥Lp = ∥JkT−1

pk
Tpk

f∥Lp

≲ ∥Tpk
f∥Lp

=
∥∥∥F−1

(∑
ξαf̂(ξ)

)∥∥∥
Lp

≤
∑

∥F−1(ξαf̂(ξ))∥Lp

≲
∑
|α|≤k

∥∂αx f∥Lp

Lo que completa la prueba de equivalencia de definiciones.

La definición de espacios de Sobolev también puede realizarse mediante el potencial de Bessel en
el caso del toro.

Definición 7.2.4 (Espacios de Sobolev). Sea s ∈ R, entonces se dice que f pertenece al espacio
de Sobolev W s

p (Tn), si Jsf ∈ Lp(Tn), donde 1 ≤ p ≤ ∞ y Js es el potencial de Bessel de orden s.
Además, se define la norma

∥f∥W s
p
:= ∥Jsf∥Lp .

Ahora, se extiende el Teorema 7.1.17 a espacios de Sobolev.

Teorema 7.2.5. Sean 0 ≤ δ < 1, 0 < ρ ≤ 1, m ∈ R, y T ∈ Ψm
ρ,δ(Tn ×Zn). Entonces, T se extiende

a un operador acotado de W s
p (Tn) en W s−µ

q (Tn) donde 1 < p ≤ q < ∞, para cualquier s ∈ R,
cuando

1. 1 < p ≤ 2 ≤ q y

µ ≥ m+ n

(
1

p
− 1

q
+ λ

)
,

2. si 2 ≤ p ≤ q y

µ ≥ m+ n

[
1

p
− 1

q
+ (1− ρ)

(
1

2
− 1

p

)
+ λ

]
,

3. si p ≤ q ≤ 2 y

µ ≥ m+ n

[
1

p
− 1

q
+ (1− ρ)

(
1

q
− 1

2

)
+ λ

]
,

donde λ := máx{0, (δ − ρ)/2}.

Demostración. Se observa que Js−µTJ−s tiene orden m−µ, que satisface los requisitos del Teorema
7.1.17, implicando su continuidad Lp-Lq. Por lo tanto, se obtiene que

∥Tf∥W s−µ
q

= ∥TJ−sJsf∥W s−µ
q

= ∥Js−µTJ−sJsf∥Lq ≲ ∥Jsf∥Lp = ∥f∥W s
p
.

Así, se completa la demostración.
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7.3. Continuidad en espacios de Hardy
Aquí se presentan los resultados de continuidad de operadores pseudo-differenciales toroidales

desde espacios de Lebesgue Lp hacia espacios de Hardy Hp, y de espacios de Hardy Hp en sí
mismos, ambos para p ≤ 1. Estos fueron obtenidos con Cardona [10], y extienden el caso eculideano
demostrado por Álvarez y Hounie [2]. En el análisis posterior, se define la siguiente descomposición
’diádica’ en los anillos

Aj(z, σ) = {x ∈ Tn : 2jσ < |x− z| < 2j+1σ} , j = 1, 2, 3, ... (7.3.1)

Nota 7.3.1. Note que Tn está contenido en cualquier bola con radio mayor que
√
n/2. Por lo tanto,

para cualquier σ > 0 dado, existe Nσ ∈ Z+ tal que
√
n

2σ
< 2Nσ ≤

√
n

σ
. (7.3.2)

Así, esta descomposición ’diádica’ es finita en el caso del toro y 2Nσ ∼ σ−1.

7.3.1. Continuidad de operadores pseudo-diferenciales de Hp en Lp

Primero, se considera el caso general para operadores con kernel valuado en operadores.

Teorema 7.3.2. Sea T un operador con kernel de valuado en operadores k := k(x, y) que satisface
para algún 0 < ω ≤ 1 las estimaciones∫

Aj(z,σ)

∥k(x, y)− k(x, z)∥B(X,Y ) dx ≤ C2−jω, si σ ≥ 1; (7.3.3)

∫
Aj(z,σγ)

∥k(x, y)− k(x, z)∥B(X,Y ) dx ≤ C2−jω/ασω(1−γ/α), si σ < 1, (7.3.4)

para |y − z| < σ y cualquier 0 < γ ≤ α ≤ 1. Además, suponga que el operador T se extiende a un
operador acotado de L2(Tn;X) en L2(Tn;Y ) y de Lq(Tn;X) en L2(Tn;Y ), donde

1

q
=

1

2
+
β

n
, para algún (1− α)

n

2
≤ β <

n

2
. (7.3.5)

Entonces, el operador T es acotado de Hp(Tn;X) en Lp(Tn;Y ), para 1 ≥ p ≥ p0 cuando α < 1,
donde

1

p0
=

1

2
+

β(ω/α+ n/2)

n(ω/α− ω + β)
,

y para 1 ≥ p > p0 = n/(n+ ω) cuando α = 1.

Demostración. Se fija 0 < p ≤ 1 y sea a un (p,∞)-átomo soportado en la bola B(z, σ). Primero, se
asume que σ ≥ 1, entonces se emplea la descomposición diádica y la propiedad de cancelación de a
para obtener∫

Tn

∥Ta(x)∥pY dx ≤
∫
B(z,σ)

∥Ta(x)∥pY dx

+

Nσ∑
j=1

∫
Aj(z,σ)

(∫
B(z,σ)

∥k(x, y)− k(x, z)∥B∥a(y)∥X dy

)p

dx

=I1 + I2
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Usando la desigualdad de Hölder con exponente 2/p, y la continuidad L2 de T se obtiene

I1 ≤
(∫

Tn

∥Ta(x)∥2Y dx

)p/2(∫
Tn

χB(z,σ)(x) dx

)(2−p)/2

= ∥Ta∥pL2(Tn;Y )|B|(2−p)/2

≲ ∥a∥pL2(Tn;Y )|B|(2−p)/2

≲ |B|(p−2)/2|B|(2−p)/2 ≤ C.

Para I2, se usa la desigualdad de Hölder con exponente 1/p y las estimaciones del kernel de la
hipótesis para obtener

I2 ≤
Nσ∑
j=1

∫
Aj(z,σ)

(∫
B(z,σ)

∥k(x, y)− k(x, z)∥B|B|−1/p dy

)p

dx

≤
Nσ∑
j=1

(∫
B(z,σ)

∫
Aj(z,σ)

∥k(x, y)− k(x, z)∥B dx dy

)p(∫
Aj(z,σ)

|B|−1/(1−p) dx

)1−p

≲
Nσ∑
j=1

2−jωp|B|p · |B|−1|Aj(z, σ)|1−p

≲
Nσ∑
j=1

2−jωpσnp · σ−n2jn(1−p)σn(1−p)

=

Nσ∑
j=1

2j[n−(n+ω)p],

que puede acotarse por una constante C > 0 siempre que

p >
n

n+ ω
≥ n

n+ ω/α
. (7.3.6)

Ahora, se considera el caso σ < 1. Entonces∫
Tn

∥Ta(x)∥pY dx ≤
∫
B(z,2σγ)

∥Ta(x)∥pY dx

+

Nσ∑
j=1

∫
Aj(z,σγ)

(∫
B(z,σ)

∥k(x, y)− k(x, z)∥B∥a(y)∥X dy

)p

dx

=I1 + I2,

con γ por elegir más tarde. El primer término puede estimarse usando la desigualdad de Hölder con
exponente 2/p y la acotación Lq-L2 de T para obtener

I1 ≤
(∫

Tn

∥Ta(x)∥2Y dx

)p/2(∫
Tn

χB(z,2σγ)(x) dx

)(2−p)/2

= ∥Ta∥pL2(Tn;Y )|B(z, 2σγ)|(2−p)/2

≲ ∥a∥pLq(Tn;X)σ
nγ(2−p)/2

≲

(∫
B(z,σ)

|B|−q/p

)p/q

σnγ(2−p)/2

≲ σ−nσnp/qσnγ(2−p)/2 = σn[γ(1−p/2)+p/q−1].
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Así, dado que 1/q = 1/2 + β/n se puede concluir que I1 estará acotado siempre que

γ ≥ 2n− p(n+ 2β)

n(2− p)
, (7.3.7)

que es una función decreciente de p y alcanza γ ≥ 1 − 2β/n cuando p = 1. De ahí el requisito
β ≥ (1− α)n/2. Por otro lado, usando la desigualdad de Hölder con exponente 1/p y la estimación
del kernel de la hipótesis, se obtiene

I2 ≤
Nσγ∑
j=1

∫
Aj(z,2σγ)

(∫
B(z,σ)

∥k(x, y)− k(x, z)∥B|B|−1/p dy

)p

dx

≤
Nσγ∑
j=1

(∫
B(z,σ)

∫
Aj(z,2σγ)

∥k(x, y)− k(x, z)∥B dx dy

)p(∫
Aj(z,2σγ)

|B|−1/(1−p) dx

)1−p

≤
Nσγ∑
j=1

2−jωp/ασωp(1−γ/α)|B|p · |B|−1|Aj(z, 2σ
γ)|1−p

≤
Nσγ∑
j=1

2−jωp/ασωp(1−γ/α)σnp · σ−n2jn(1−p)2n(1−p)σnγ(1−p)

= σ−γ[p(n+ω/α)−n]+p(n+ω)−n
Nσγ∑
j=1

2j[n−(n+ω/α)p]

Ahora, dado que p debe satisfacer (7.3.6), se tiene que n − (n + ω/α)p < 0. Por lo tanto, se puede
acotar la suma geométrica por una constante y obtener que

I2 ≲ σ−γ[p(n+ω/α)−n]+p(n+ω)−n,

que puede estimarse por una constante siempre que

γ ≤ p(n+ ω)− n

p(n+ ω/α)− n
, (7.3.8)

que es una función creciente de p que alcanza γ ≤ α cuando p = 1. Por lo tanto, el p0 crítico ocurre
cuando se igualan los lados derechos de (7.3.7) y (7.3.8), completando la demostración.

Ahora, se demuestra que bajo ciertas condiciones, los operadores pseudo-diferenciales toroidales
satisfacen las estimaciones del kernel necesarias para usar el teorema anterior.

Teorema 7.3.3. Sea T ∈ Ψm
ρ,δ(Tn × Zn), 0 < ρ ≤ 1, 0 ≤ δ < 1 con kernel k := k(x, y). Entonces,

a) Si σ ≥ ε > 0, y j = 1, 2, 3, ...,

sup
|y−z|<σ

∫
Aj(z,σ)

|k(y, x)− k(z, x)|dx ≤ Cε2
−j , (7.3.9)

sup
|y−z|<σ

∫
Aj(z,σ)

|k(x, y)− k(x, z)|dx ≤ Cε2
−j , (7.3.10)

donde Cε no depende de σ, j, o z.

b) Si m ≤ −n[(1− ρ)/2 + λ], 0 < γ ≤ 1, σ < 1, y j = 1, 2, 3, ...,

sup
|y−z|<σ

∫
Aj(z,σγ)

|k(x, y)− k(x, z)| dx ≤ C2−j/ρσ1−γ/ρ. (7.3.11)
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c) Si m ≤ −n(1− ρ)/2, 0 < γ ≤ 1, σ < 1, y j = 1, 2, 3, ...,

sup
|y−z|<σ

∫
Aj(z,σγ)

|k(y, x)− k(z, x)| dx ≤ C2−j/ρσ1−γ/ρ. (7.3.12)

Demostración. a) Por el Teorema 7.1.11 y la desigualdad triangular se tiene que∫
Aj(z,σ)

|k(y, x)− k(z, x)| dx ≤
∫
Aj(z,σ)

|k(y, x)| dx+

∫
Aj(z,σ)

|k(z, x)| dx

≲
∫
Aj(z,σ)

|x− y|−N dx+

∫
Aj(z,σ)

|x− z|−N dx,

para algún N ≥ (m+ n)/ρ. Ahora, se tiene que |x− y| ≥ |x− z| − |z − y| > 2jσ − σ ≥ 2j−1σ.
Así, dado que el toro tiene volumen uno, se obtiene que∫

Aj(z,σ)

|k(y, x)− k(z, x)| dx ≲ (2j−1σ)−N + (2jσ)−N

≤ (2jε)−N ≤ Cε2
−j .

b) Sea p̃ := p̃(x, ξ) el símbolo correspondiente de T definido en Tn × Rn, ver el Teorema 6.2.18.
Sea φ ∈ C∞

0 (R) soportada en [1/2, 1] tal que∫ ∞

0

φ(1/t)/t dt =

∫ 2

1

φ(1/t)/t dt = 1.

Se define
k(x, y, t) =

∫
Rn

ei2π(x−y)·ξp̃(x, ξ)φ(⟨ξ⟩/t) dt,

de modo que

k(x, y) =

∫ ∞

0

k(x, y, t) dt =

∫ ∞

1

k(x, y, t) dt.

Para 0 < γ ≤ 1, se tiene que ∫
Aj(z,σγ)

|k(x, y, t)− k(x, z, t)|dx ≤

[∫
Tn

(
1 + t2ρ|x− z|2

)N |k(x, y, t)− k(x, z, t)|2 dx
]1/2 [∫

Aj(z,σγ)

(
1 + t2ρ|x− z|2

)−N
dx

]1/2
,

donde N > n/2 es un número natural por determinar. En el Teorema 7.1.14 se demuestra que
el lado izquierdo está dominado por

σt · tρn/2 si σt ≤ 1.

De aquí viene la restricción de orden. Para estimar el segundo factor, se define

F (r) =

[∫ 2r

r

(1 + s2)−Nsn−1 ds

]1/2
, 0 < r <∞.

Note que F es una función suave, tal que F (r) ∼ rn/2 cuando r → 0 y F (r) ∼ rn/2−N cuando
r → ∞. Por lo tanto, se obtiene que[∫

Aj(z,σγ)

(
1 + t2ρ|x− z|2

)−N

]1/2
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≤

[∫
Aj(z,σγ)

(
1 + t2ρ|x− z|2

)−N
(tρ|x− z|)n−1(tρ2jσγ)1−n dx

]1/2
≲ t−ρn/2F (tρ2jσγ).

Así, se tiene que ∫
Aj(z,σγ)

|k(x, y, t)− k(x, z, t)|dx ≲ tσF (tρ2jσγ), tσ ≤ 1.

Ahora, se considera el caso tσ > 1. El cálculo hecho en el Teorema 7.1.14 , muestra que∫
Aj(z,σγ)

|k(x, y, t)|+ |k(x, z, t)|dx ≲ (tρ2jσγ)n/2−N .

Combinando las dos últimas estimaciones se obtiene que

Ij(y, z, t) :=

∫
Aj(z,σγ)

|k(x, y, t)− k(x, z, t)|dx

≤ C

[∫ 1/σ

1

tσF (tρ2jσγ)/t dt+

∫ ∞

1/σ

(tρ2jσγ)n/2−N/t dt

]
. (7.3.13)

Ahora, se elige N de modo que ρ(N − n/2) > 1, lo que implica que ∫ F (tρ) dt < ∞. Además,
de (7.3.13) se obtiene que la integral Ij(y, z, t) puede estimarse por

2−j/ρσ1−γ/ρ + 2j(n/2−N)σ(1−γ/ρ)ρ(N−n/2) ≤ 2−j/ρσ1−γ/ρ, 0 < σ < 1.

Así, completando la demostración de este caso.

c) Se puede usar el mismo método que en el caso anterior para estimar (7.3.12) cuando tσ ≤ 1.
Además, inspeccionando la demostración del Teorema 7.1.14 se puede ver que se puede estimar
como sigue ∫

Aj(z,σγ)

|k(y, x)− k(z, x)|dx

≤ C

[∫ 1/σ

1

tσF (tρ2jσγ)/t dt+

∫ ∞

1/σ

(tρ2jσγ)n/2−N dt

]
.

Obteniendo el resultado deseado.

Se procede a usar estas estimaciones y Teorema 7.3.2 para obtener la acotación Hp-Lp para
operadores pseudo-diferenciales toroidales.

Teorema 7.3.4. Sea T ∈ Ψm
ρ,δ(Tn × Zn), 0 < ρ ≤ 1, 0 ≤ δ < 1. Suponga que

m ≤ −β − nλ para algún (1− ρ)
n

2
≤ β <

n

2
.

Entonces, el operador T es una aplicación continua de Hp(Tn) en Lp(Tn) para 1 ≥ p ≥ p0 cuando
ρ < 1, donde

1

p0
=

1

2
+

β(1/ρ+ n/2)

n(1/ρ− 1 + β)
, (7.3.14)

y para 1 ≥ p > p0 = n/(n+ 1) cuando ρ = 1.
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Demostración. Note que por Teorema 7.3.3, el operador T satisface las estimaciones del kernel con
α = ρ y ω = 1. La acotación L2 se demostró en el Teorema 7.1.12, dado que m ≤ −nλ. Así, el único
requisito del Teorema 7.3.2 que se necesita probar es la acotación Lq-L2. Note que J−β es acotado
de Lq(Tn) en L2(Tn) por la desigualdad de Hardy-Littlewood-Sobolev. Por lo tanto, dado que JβT
tiene orden m+ β ≤ −nλ, se obtiene que

∥Tf∥Lq = ∥J−β(JβT )f∥Lq ≲ ∥(JβT )f∥L2 ≲ ∥f∥L2 . (7.3.15)

Así, completando los requisitos para obtener el resultado deseado del Teorema 7.3.2.

Nota 7.3.5. Note que para p = 1 y β = n(1− ρ)/2 se obtiene la continuidad H1-L1 demostrada en
el Teorema 7.1.15.

7.3.2. Continuidad de operadores pseudo-diferenciales en Hp

Ahora, se introduce un objeto con propiedades similares a los átomos en Hp.

Definición 7.3.6 (Molécula). Para un espacio de Banach Y , se dice que M : Tn → Y es una
(p, θ, µ)-molécula relacionada con la bola B(z, σ) ⊂ Tn si satisface lo siguiente:

Si σ ≥ 1:

(M1) ∫
∥M(x)∥2Y dx ≲ σn(1−2/p).

(M2) Para algún 2n/p− n < µ < n+ (2ω/α), se tiene que∫
∥M(x)∥2Y |x− z|µ dx ≲ σµ+n(1−2/p).

Si σ < 1:

(M′
1) ∫

∥M(x)∥2Y dx ≲ σn(1/q−2/p).

(M′
2) Para algún 2n/p− n < µ < (2β/(1− θ)) ≤ n+ (2ω/α), se tiene que∫

∥M(x)∥2Y |x− z|µ dx ≲ σθµ+n(1/q−2/p),

donde
θ =

n/2 + ω − β

n/2 + ω/α
≤ α y

1

q
=

1

2
+
β

n
.

Además, debe satisfacer la propiedad de cancelación, a saber, que ∫M(x) dx = 0.

Se demostrará que la imagen de un átomo (p, 2) es una molécula adecuada. Por lo tanto, para
dar sentido a la propiedad de cancelación de una molécula, se demuestra el siguiente lema.

Lema 7.3.7. Cualquier (p, θ, µ)-molécula M := M(x) relacionada con una bola B(z, σ) es una
función absolutamente integrable.

Demostración. Primero, se asume que σ ≥ 1. Entonces, usando la desigualdad de Hölder y (M1) se
tiene que ∫

B(z,σ)

∥M(x)∥Y dx ≤ ∥M(x)∥L2(Tn;Y )∥χB(z,σ)∥L2

≲ σn(1/2−1/p) · σn/2 ≲ |B|1−1/p.
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Por otro lado, por la desigualdad de Hölder y (M2)∫
Tn\B(z,σ)

∥M(x)∥Y dx ≤
∥∥∥M(x)|x− z|µ/2

∥∥∥
L2(Tn;Y )

∥∥∥|x− z|−µ/2χTn\B(z,σ)(x)
∥∥∥
2

≲ σµ/2+n(1/2−1/p) · σ(n−µ)/2

≲ σn(1−1/p) ≲ |B|1−1/p.

Por lo tanto, M(x) ∈ L1 cuando σ ≥ 1. Ahora, se asume que σ < 1. Usando (M′
1) y la desigualdad

de Hölder se obtiene que∫
B(z,σ)

∥M(x)∥Y dx ≤ ∥M(x)∥L2(Tn;Y )∥χB(z,σ)∥L2

≲ σn(1/q−1/p) · σn/2

≲ |B|1/q−1/p+1/2 = |B|β/n+1−1/p,

donde se usó el hecho de que 1/q = 1/2 + β/n. Usando (M′
2) se obtiene que∫

Tn\B(z,σ)

∥M(x)∥Y dx ≤
∥∥∥M(x)|x− z|µ/2

∥∥∥
L2(Tn;Y )

∥∥∥|x− z|−µ/2χTn\B(z,σ)(x)
∥∥∥
L2

≲ σθµ/2+n(1/q−1/p) · σ(n−µ)/2

∼ |B|β/n+1−1/p−(1−θ)µ/2n.

Así, M(x) ∈ L1 también cuando σ < 1, completando la demostración.

Ahora, se demuestra que la normaHp de una molécula solo depende de las constantes relacionadas
con ella. Esto será útil al demostrar que la norma Hp de la imagen de un (p, 2)-átomo bajo un cierto
operador es uniforme.

Lema 7.3.8. Sea M :=M(x) una molécula (p, θ, µ) relacionada con B(z, σ). Entonces,

M(x) =

Nσ∑
j=0

λjaj ,

donde aj es un (p, 2)-átomo soportado en B(z, 2j+1σ). Además ∥M∥Hp(Tn;Y ) solo depende de las
constantes en la Definición 7.3.6.

Demostración. Sea Bj = B(z, 2j+1σ) y sea Mj el valor promedio de M(x) en Aj(z, σ). Note que
Aj = Bj \Bj−1. Se define

ψj(x) = [M(x)−Mj ]χAj
(x),

que está soportada en Bj y tiene valor promedio cero. Además,

∥ψj∥2L2(Tn;Y ) ≤ 22
∫
Aj(z,σ)

∥M(x)∥2Y dx.

Ahora, se asume σ ≥ 1 y se usa (M2) para obtener

∥ψj∥2L2(Tn;Y ) ≲
∫
Aj(z,σ)

∥M(x)∥2Y |x− z|µ|x− z|−µ dx

≲ σµ+n(1−2/p) · 2−jµσ−µ

≲ 2−j[µ+n(1−2/p)]|Bj |1−2/p.

Por lo tanto, se tiene que

∥ψj∥L2(Tn;Y ) ≲ 2−j[µ/2+n(1/2−1/p)]|Bj |1/2−1/p. (7.3.16)
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Por otro lado, se tiene que

M(x)χBm
(x)−

m∑
j=0

ψj(x) =

m∑
j=0

MjχBj
(x),

donde el lado izquierdo converge en la norma L2 aM(x)−
∑∞

j=0 ψj(x). Para estimar el lado izquierdo,
se define una sucesión {νj}, j = −1, 0, 1, 2, ..., Nσ por

ν−1 =

∫
M(x) dx = 0, νj =

∫
Tn\Bj

M(x) dx.

Entonces se tiene que
Nσ∑
j=0

MjχAj
=

Nσ∑
j=0

(νj−1 − νj)|Aj |−1χAj
=

Nσ−1∑
j=0

ϕj − νNσ
|ANσ

|−1χANσ
,

donde ϕj = νj
(
|Aj+1|−1χAj+1

− |Aj |−1χAj

)
. Se puede notar que cada ϕj está soportada en Bj+1 y

tiene valor promedio cero. Además, se puede usar el método usado para ψj para obtener

∥ϕj∥L2(Tn;Y ) ≲ 2−j[µ/2+n(1/2−1/p)]|Bj+1|1/2−1/p. (7.3.17)

Ahora, se tiene que νNσ
= 0 gracias a que BNσ

contiene el toro, ver la Nota 7.3.1. Por lo tanto se
tiene que

M(x) = ψ0(x) +

Nσ∑
j=1

[ψj(x) + ϕj−1(x)] , (7.3.18)

donde cada término puede reescribirse como un(p, 2)-átomo por (7.3.16) y (7.3.17). Ahora, se asume
σ < 1 y se usa (M′

2) para obtener

∥ψj∥2L2(Tn;Y ) ≲
∫
Aj(z,σ)

∥M(x)∥2Y |x− z|µ|x− z|−µ dx

≲ σθµ+2n(1/q−1/p) · 2−jµσ−µ

≲ 2−j[µ+2n(1/2−1/p)]σµ(θ−1)+2n(1/q−1/2)|Bj |2(1/2−1/p).

Por lo tanto, se tiene que

∥ψj∥L2(Tn;Y ) ≲ 2−j[µ/2+n(1/2−1/p)]σµ(θ−1)/2+n(1/q−1/2)|Bj |1/2−1/p.

El exponente de σ se convierte en µ(θ−1)/2+β, de ahí la restricción µ ≤ 2β/(1− θ). Por otro lado,
∥ϕj∥2 puede estimarse de manera similar para obtener la expresión (7.3.18) para σ < 1. Ahora, se
puede considerar la norma Hp de M . En este caso, se tiene que

|λj |p ≤ C2j[n(1−p/2)−µp/2],

Por lo tanto ∥M∥Hp(Tn;Y ) ≤ C siempre que µ > np/2− n. Así, completando la demostración.

Se procede a definir una condición para operadores con kernel valuado en operadores que será
útil para demostrar propiedades de continuidad para estos operadores.

Definición 7.3.9 (Condición Dr,α). Sea 1 ≤ r ≤ ∞ y 0 < α ≤ 1. Se dice que un operador
T : C∞(Tn;X) → C∞(Tn;Y ) satisface la condición Dr,α si su kernel valuado en operadores asociado
k := k(x, y) es continuo fuera de la diagonal de Tn × Tn y existe una sucesión {dj} ∈ ℓ1, tal que
para todo σ > 0 se tiene que(∫

Aj(z,σα)

∥k(x, y)− k(x, z)∥rB dx

)1/r

≤ dj |Aj(z, σ
α)|−1/r′ , j = 1, 2, ...,

siempre que |y − z| < σ. Además, también se requiere que k̃(x, y) := k(y, x) satisfaga estas estima-
ciones.
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Un caso límite de esta condición se enuncia de la siguiente manera.
Nota 7.3.10 (Condición Dα). Se dice que el operador T de la Definición 7.3.9 satisface la condición
Dα si para algún 0 < ω ≤ 1, 0 < α ≤ 1 se tiene que

∥k(x, y)− k(x, z)∥B + ∥k(y, x)− k(z, x)∥B ≤ C
|y − z|ω

|x− z|n+ω/α
,

cuando 2|y − z|α ≤ |x− z| para todo x, y, z ∈ Tn.
Ahora, se demuestra un resultado auxiliar que relaciona la función maximal p de Hardy-Littlewood

y el operador maximal sharp.

Teorema 7.3.11. Sea T un operador que satisface la condición Dr,α tal que para 1 < p < q ≤ ∞ y
p/q ≤ α se tiene que(

1

|B(z, σ)|

∫
B(z,σ)

∥Tf(x)∥qY dx

)1/q

≲

(
1

|B(z, σα)|

∫
∥f(x)∥pX dx

)1/p

, (7.3.19)

para todo 0 < σ < 1 y
∥Tf∥Lp(Tn;Y ) ≲ ∥f∥Lp(Tn;X),

cuando σ ≥ 1, para alguna constante absoluta C > 0. Entonces, para s = máx{p, r′}, se tiene que

(Tf)#(x) ≲ Msf(x), f ∈ L∞(Tn;X). (7.3.20)

Demostración. Se fija una bola B(z, σ) y se escribe f = f1 + f2, donde

f1 = fχB(z,2σα).

Sea
c =

∫
k(z, y)f2(y) dy,

entonces se tiene que∫
B(z,σ)

∥Tf(x)− c∥Y dx ≤
∫
B(z,σ)

∥Tf1(x)∥Y dx

+

Nσα∑
j=1

∫
B(z,σ)

∫
Aj(z,σα)

∥k(x, y)− k(z, y)∥B∥f(y)∥X dy dx.

Primero, usando la desigualdad de Hölder y la condición Dr,α se obtiene que para j = 1, 2, ..., Nσα∫
Aj(z,σα)

∥k(x, y)− k(z, y)∥B∥f(y)∥X dy

≤

(∫
Aj(z,σα)

∥k(x, y)− k(z, y)∥rB dy

)1/r (∫
Aj(z,σα)

∥f(y)∥r
′

X dy

)1/r′

≤ dj |Aj(z, σ
α)|−1/r′

(∫
Aj(z,σα)

∥f(y)∥r
′

X dy

)1/r′

.

≤ djMr′f(z).

Por lo tanto, se tiene que

1

|B(z, σ)|

Nσα∑
j=1

∫
B(z,σ)

∫
Aj(z,σα)

∥k(x, y)− k(z, y)∥B∥f(y)∥X dy dx
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≲ Mr′f(z).

Por otro lado, se asume σ < 1. Entonces, usando la desigualdad de Hölder y (7.3.19), se obtiene que

1

|B(z, σ)|

∫
B(z,σ)

∥Tf1(x)∥Y dx

≤

(
1

|B(z, σ)|

∫
B(z,σ)

∥Tf1(x)∥qY dx

)1/q (∫
B(z,σ)

dx

|B(z, σ)|

)1/q′

≲

(
1

|B(z, σα)|

∫
B(z,2σα)

∥f(x)∥pX dx

)1/p

≲ Mpf(z).

Para el caso σ ≥ 1 se usa la desigualdad de Hölder y la acotación Lp de T para obtener

1

|B(z, σ)|

∫
B(z,σ)

∥Tf1(x)∥Y dx ≤ |B(z, σ)|−1/p∥Tf1∥Lp(Tn;Y )

≲ |B(z, σ)|−1/p∥f1∥Lp(Tn;X)

≲ Mpf(z).

Combinando las estimaciones anteriores se puede concluir que

(Tf)#(z) ≲ Msf(z),

terminando la demostración.

Además, cuando el operador satisface la condición D1,α se obtiene el siguiente corolario.

Corolario 7.3.12. Sea T un operador como en el Teorema 7.3.11, pero que satisface la condición
D1,α. Entonces T es un operador continuo de L∞(Tn;X) en BMO(Tn;Y ).

Demostración. Note que r = 1 implica que s = ∞ y la estimación en (7.3.20) se convierte en

(Tf)#(x) ≲ ∥f∥L∞(Tn;X),

probando el resultado.

En la hipótesis del siguiente lema se tiene la condición T ∗(e), una contraparte vectorial de la
condición T (1) famosamente establecida por David y Journé, ver [15].

Lema 7.3.13. Sean X,Y espacios de Banach reflexivos, sean T y T ∗ operadores con kernels que
satisfacen la condición Dα. También, suponga que pueden extenderse a operadores acotados de
L2(Tn;X) en L2(Tn;Y ) y de Lq(Tn;X) en L2(Tn;Y ) de modo que

1

q
=

1

2
+
β

n
para algún (1− α)

n

2
≤ β <

n

2
. (7.3.21)

Además, suponga que T ∗(e) = 0 para todo e ∈ Y ′ y e : Tn → Y ′ dado por e(x) = e. Sea a :=
a(x) un(p, 2)-átomo soportado en B(z, σ). Entonces, M(x) := Ta(x) es una molécula (p, θ, µ) con
constantes que dependen solo de T y sus propiedades de continuidad.

Demostración. Primero, se asume σ ≥ 1. Entonces, por la acotación L2 se obtiene que∫
∥M(x)∥2Y dx = ∥Ta∥2L2(Tn;Y ) ≲ ∥a∥2L2(Tn;Y ) ≲ |B|2(1/2−1/p) ≲ σn(1−2/p),
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probando (M1). Además, se tiene que∫
∥M(x)∥2Y |x− z|µ dx ≤

∫
B(z,2σα)

∥M(x)∥2Y |x− z|µ dx

+

Nσα∑
j=1

∫
Aj(z,σα)

∥M(x)∥2Y |x− z|µ dx

= I1 + I2.

Por (M1), se obtiene que

I1 ≲
∫

∥M(x)∥2Y σαµ dx ≲ σµ+n(1−2/p).

Además, asumiendo x ∈ Aj(z, σ
α), y por la propiedad de cancelación de a se obtiene que

∥M(x)∥2Y ≤

[∫
B(z,σ)

∥k(x, y)− k(x, z)∥B∥a(y)∥X dy

]2

≲
|y − z|2ω

|x− z|2(n+ω/α)

[∫
B(z,σ)

∥a(y)∥X dy

]2

≲
σ2ω · σ2n(1−1/p)

|x− z|2(n+ω/α)
.

Ahora, dado que µ < n+ 2ω/α se tiene que

I2 ≤
Nσα∑
j=1

σ2ω+2n(1−1/p) · (2jσα)µ−2ω/α−n

≲ σαµ+2n(1−1/p)−nα

≲ σµ+2n(1−1/p),

dado que µ > n y α ≤ 1, probando (M2). Ahora, se supone que σ < 1. Primero, por la estimación
Lq-L2 de T , se obtiene que∫

∥M(x)∥2Y dx = ∥Ta∥2L2(Tn;Y ) ≲ ∥a∥2Lq(Tn;Y ) ≤ |B|2(1/q−1/p) ≲ σ2n(1/q−1/p),

probando (M′
1). Por otro lado, se tiene∫

∥M(x)∥2Y |x− z|µ dx ≤
∫
B(z,2σθ)

∥M(x)∥2Y |x− z|µ dx

+

N
σθ∑

j=1

∫
Aj(z,σθ)

∥M(x)∥2Y |x− z|µ dx

= I1 + I2.

Como en el caso anterior, se puede usar (M′
1) para estimar

I1 ≲ σθµ+2n(1/q−1/p).

Además, cuando x ∈ Aj(z, σ
θ) se tiene una estimación similar a la anterior, a saber que

I2 ≲

N
σθ∑

j=1

σ2ω+2n(1−1/p)(2jσθ)µ−n−2ω/α

≲ σ2ω+2n(1−1/p)+θµ−θ(n+2ω/α)

= σθµ+2n(1/q−1/p),
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dado que

θ =
n(1− 1/q) + ω

n/2 + ω/α
.

Esto completa la demostración de (M′
2). Solo queda probar que

∫
M(x) dx = 0. Note que |B|−1+1/pa

es un (1, 2)-átomo y dado e ∈ Y ′ se tiene que

|B|−1+1/p

〈
e,

∫
M(x) dx

〉
=

∫ 〈
e(x), T

(
|B|−1+1/pa

)
(x)
〉
dx

=

∫ 〈
T ∗e(x), |B|−1+1/pa(x)

〉
dx = 0.

Donde se ha usado el hecho de que T ∗ es continuo en L2 para emplear el Corolario 7.3.12 y concluir
que T ∗ mapea L∞(Tn, Y ′) en BMO(Tn;X ′), que es el dual de H1(Tn;X), dado que X es reflexivo.
Por lo tanto, se demostró que M(x) es una molécula (p, θ, µ).

Note que las constantes relacionadas de la molécula resultante solo dependen del operador T .
Además, la norma Hp de la molécula solo depende de dichas constantes. Por lo tanto, se procede
a combinar los resultados anteriores de esta sección para obtener la acotación Hp para operadores
con kernels valuados en operadores bajo ciertas condiciones.

Teorema 7.3.14. Sean X,Y espacios de Banach reflexivos, sean T y T ∗ operadores que satisfacen
la condición Dα. También, suponga que pueden extenderse a operadores acotados de L2(Tn;X) en
L2(Tn;Y ) y de Lq(Tn;X) en L2(Tn;Y ) de modo que

1

q
=

1

2
+
β

n
para algún (1− α)

n

2
≤ β <

n

2
. (7.3.22)

Además, suponga que T ∗(e) = 0 para todo e ∈ Y ′ y e : Tn → Y ′ dado por e(x) = e. Sea

1

p0
=

1

2
+

β(ω/α+ n/2)

n(ω/α− ω + β)
, (7.3.23)

entonces para p0 < p ≤ 1, el operador T es acotado de Hp(Tn;X) en Hp(Tn;Y ).

Demostración. Note que por el Lema 7.3.13, la imagen de todo átomo Hp,2(Tn;X) es una molécula
(p, θ, µ) con constantes que dependen solo de T , y por el Lema 7.3.8 se tiene que dichas moléculas
tienen normas Hp que dependen solo de dichas constantes. Por lo tanto se tiene una cota uniforme
∥Ta∥Hp(Tn;Y ) ≤ C para todo átomo (p, 2)-a. Inspeccionando la Definición 7.3.6 se puede ver que
esto ocurre cuando

2n/p− n <
2β

1− θ
, donde θ =

n/2 + ω − β

n/2 + ω/α
.

Así, se puede concluir la expresión para p0 establecida anteriormente.

Ahora, se aplica este resultado en el contexto específico de operadores pseudo-diferenciales toroi-
dales.

Teorema 7.3.15. Sea T ∈ Ψm
ρ,δ(Tn × Zn), 0 < ρ ≤ 1, 0 ≤ δ < 1. suponga que

m ≤ −β − nλ para algún (1− ρ)
n

2
≤ β ≤ n

2
, (7.3.24)

y que T ∗(1) = 0 en el sentido de BMO. Entonces el operador T es una aplicación continua de
Hp(Tn) en sí mismo para p0 < p ≤ 1 donde

1

p0
=

1

2
+

β(1/ρ+ n/2)

n(1/ρ− 1 + β)
. (7.3.25)

Demostración. Se puede elegir γ = ρ en el Teorema 7.3.3 para obtener la condición D1,ρ para T y
T ∗. Por lo tanto estos operadores satisfacen la condición Dρ con ω = 1 (ver la Nota 7.3.10). Además,
T es acotado en L2 en vista del Teorema 7.1.16 y la acotación Lq-L2 de T se sigue de( 7.3.15) en
la demostración del Teorema 7.3.4. Así se ha demostrado que T satisface todas las condiciones para
aplicar el Teorema 7.3.14. Lo que completa la demostración.
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