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Introducción



Contexto General

El análisis armónico y la teoría de operadores pseudo-diferenciales constituyen herramientas
fundamentales en el análisis armónico moderno.

• Permiten estudiar la regularidad de soluciones de ecuaciones diferenciales parciales.
• Unifican la teoría de operadores diferenciales y multiplicadores de Fourier.
• Proveen un marco para cuantificar la acotación en diversos espacios funcionales.

En el caso Euclidiano (Rn), la teoría está bien establecida gracias a trabajos de Alberto
Calderón, Antoni Zygmund, Lars Hörmander y Charles Fefferman.
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Notación y Terminología

A lo largo de esta presentación utilizaremos la siguiente notación estándar:
• Desigualdad salvo constantes: A ≲ B indica que existe una constante C > 0 tal

que A ≤ CB. Si C depende de un parámetro α, escribimos A ≲α B.
• Soportes japoneses: Definimos ⟨x⟩ :=

√
1 + |x|2 para capturar el comportamiento

asintótico sin presentar problemas en el origen.
• Multi-índices: Para α ∈ Nn

0 , denotamos la derivada parcial como ∂α := ∂α1
x1 · · · ∂αn

xn

y su longitud como |α| =
∑
αi.
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El Problema en el Caso Euclidiano

Para 0 ≤ δ, ρ ≤ 1, consideramos la clase de símbolos de Hörmander Sm
ρ,δ(Rn × Rn),

constituida por funciones suaves a : Rn × Rn → C, que satisfacen:

|∂β
x∂

α
ξ a(x, ξ)| ≲αβ ⟨ξ⟩m−ρ|α|+δ|β|.

El operador pseudo-diferencial asociado se define como:

Taf(x) :=
∫
Rn
e2πix·ξa(x, ξ)f̂(ξ) dξ,

donde f̂ corresponde a la transformada de Fourier usual en Rn. Entonces, se dice que
Ta ∈ Ψm

ρ,δ(Rn × Rn).
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El Teorema Clásico de Fefferman

Uno de los resultados centrales que motiva esta tesis es el siguiente:

Teorema (Fefferman [5])
Sean 0 ≤ δ < 1 − ε < 1, y sea T ∈ Ψm

1−ε,δ(Rn × Rn). Suponga que

m ≤ −nε
∣∣∣∣1p − 1

2

∣∣∣∣ .
Entonces el operador T extiende a un operador continuo de Lp(Rn) en sí mismo para
1 < p < ∞.
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Objetivos de la Tesis

El análisis en el toro Tn presenta desafíos únicos debido a la naturaleza discreta del espacio
de frecuencias (Zn). Los objetivos son:

1. Formalizar el cálculo simbólico en el toro utilizando diferencias finitas discretas.
2. Extender los resultados de continuidad Lp de Fefferman y Álvarez-Hounie [7] al

contexto toroidal.
3. Establecer condiciones precisas para la continuidad en la escala de espacios de Hardy
Hp (p ≤ 1).

4. Obtener resultados en espacios con pesos Ap acorde a técnicas de Park y Tomita
[10], y espacios de Sobolev.

Note que no es posible extender los resultados euclidianos al toro mediante el uso de cartas
locales, debido a que los operadores pseudo-diferenciales no son estables cuando ρ < 1−δ.
Además, los espacios de funciones de Hardy y BMO no son estables al multiplicarse por
funciones test, lo que no permite realizar una partición de la unidad adecuada.
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Preliminares y Herramientas



Definiciones Básicas en el Toro

Se define al toro n-dimensional como el grupo aditivo cociente Tn := Rn/Zn = (R/Z)n.

El toro puede ser identificado con el conjunto [0, 1)n.

Además, se considera con la topología cociente y la medida de Lebesgue restringida.
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Espacios de Lebesgue Lp(Tn)

Sea w : Tn → C una función localmente integrable no-negativa. Entonces, se puede definir
una medida

w(E) :=
∫

E
w(x) dx.

Definición (Espacios de Lebesgue pesados)
Se dice que una función (fuertemente) medible f : Tn → X, pertenece al espacio de
Lebesgue pesado Lp(Tn;X;w) cuando

∥f∥Lp(w) :=
(∫
Tn

∥f(x)∥p
X dw(x)

)1/p

< ∞,

para 1 ≤ p < ∞. Cuando p = ∞, cuando es acotada excepto en un conjunto de
w-medida cero.
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Propiedades Básicas de Lp

Proposición (Desigualdad de Hölder)
Sean 1 ≤ p, q ≤ ∞, tales que 1

p + 1
q = 1. Entonces, para g ∈ Lq(Ω;X) y

f ∈ Lp(Ω; B(X,Y )), se tiene que fg ∈ L1(Ω;Y ) y

∥fg∥L1 ≤ ∥f∥Lp∥g∥Lq .

Proposición (Desigualdad de Minkowski)
Dado 1 ≤ p ≤ ∞, sean f, g ∈ Lp(Ω;X). Entonces se tiene que

∥f + g∥Lp ≤ ∥f∥Lp + ∥g∥Lp .
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Continuidad de Tipo Débil

Definición (Tipo Débil (p, q))
Sea T un operador desde Lp(Ω;X;w) al espacio de funciones medibles desde Σ hacia Y .
Se dice que T es de tipo (p, q) débil respecto a los pesos (u,w), con q < ∞, si se tiene
que:

u{x ∈ Σ : ∥Tf(x)∥Y > λ} ≲
(

∥f∥Lp(w)
λ

)q

.

Esta noción es crucial para aplicar teoremas de interpolación como el de Marcinkiewicz.
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Interpolación de Marcinkiewicz

Teorema (Interpolación de Marcinkiewicz)
Sean 1 ≤ p0 < p1 ≤ ∞, y 1 ≤ q0 < q1 ≤ ∞, tales que pj < qj . Y sea T un operador
sublineal de tipo débil (p0, q0) y (p1, q1), respecto a las medidas (u,w). Entonces, se
tiene que T es de tipo fuerte (p, q) respecto a (u,w) para p0 < p < p1, q0 < q < q1, y
p ≤ q, con la forma

1
p

= 1 − θ

p0
+ θ

p1
,

1
q

= 1 − θ

q0
+ θ

q1
.
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Análisis de Fourier en Tn y Zn

Definición (Espacio de Schwartz S(Zn; X))
El espacio de funciones de decaimiento rápido φ : Zn → X tales que para todo M > 0,

∥φ(ξ)∥X ≲M ⟨ξ⟩−M .

Definición (Transformada de Fourier periodica)
Sea FTn : C∞(Tn;X) → S(Zn;X) definida por

(FTnf)(ξ) = f̂(ξ) :=
∫
Tn
e−i2πx·ξf(x) dx.

Su inversa es
(F−1
Tn φ)(x) :=

∑
ξ∈Zn

ei2πx·ξφ(ξ).
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Identidad de Plancherel

La teoría L2 se fundamenta en la isometría entre el espacio de funciones y el espacio de
coeficientes.

Teorema (Identidad de Plancherel)
Si u ∈ L2(Tn;X), entonces û ∈ ℓ2(Zn;X), y se cumple que

∥û∥ℓ2 = ∥u∥L2 .
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Distribuciones en el Toro

Definición (Distribuciones Periódicas D′(Tn))
El espacio de distribuciones periódicas D′(Tn;X) consiste de los operadores lineales
continuos definidos de C∞(Tn) en X.

Toda función f ∈ Lp(Tn;X) es una distribución periódica mediante el funcional definido
como

⟨f, φ⟩ :=
∫
Tn
f(x)φ(x) dx.

Teorema (Distribuciones Discretas S ′(Zn; X))
Los operadores lineales continuos definidos de S(Zn) en X tienen la forma

⟨u, φ⟩ =
∑

ξ∈Zn

u(ξ)φ(ξ).
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Análisis de distribuciones

Definición (Derivada Distribucional)
Para u ∈ D′(Tn), definimos su derivada distribucional ∂αu mediante:

⟨∂αu, φ⟩ := (−1)|α|⟨u, ∂αφ⟩ .

Definición (Transformada de Fourier distribucional)
Además, se define la transormada de Fourier distribucional F : D′(Tn;X) → S ′(Zn;X),
como

⟨Fu, φ⟩ := ⟨u, ı ◦ F−1φ⟩.

Donde (ı ◦ f)(x) = f(−x).
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Espacios de Sobolev

Definición (Espacios de Sobolev)
Sea 1 ≤ p ≤ ∞ y sea k ∈ N0. El espacio de Sobolev W k

p (Tn;X) consiste de todas las
funciones f ∈ Lp(Tn;X) tales que para cualquier multi-índice |α| ≤ k se tiene que ∂αf

existe (en el sentido de distribuciones) y pertenecen a Lp(Tn;X). Para tales funciones se
define

∥f∥W k
p

:=

 ∑
|α|≤k

∥∂αf∥p
Lp

1/p

, (1 ≤ p < ∞).
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Espacios de Hardy y BMO



Espacio de Hardy H1

Se adapta la teoría de Fefferman-Stein [12]. Con Ω = Rn,Tn.

Definición (Espacio de Hardy H1)
Se dice que f ∈ L1(Ω;X) se encuentra en el espacio de Hardy H1(Ω;X) si existen
f1, . . . , fn ∈ L1(Ω;X) que satisfacen

f̂j(ξ) = iξj

|ξ|
f̂(ξ).

Se escribe fj =: Rjf (transformada de Riesz), y se define la norma

∥f∥H1 := ∥f∥L1 +
n∑

j=1
∥Rjf∥L1 .
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Espacios de Hardy Atómicos Hp
at

Para 0 < p ≤ 1, definimos Hp(Tn) mediante átomos (p, q).

Definición (Átomo (p, q))
Sea 1 ≤ q ≤ ∞ y p ≤ 1. Una función a(x) es un (p, q)-átomo si existe una bola B tal
que:

1. supp a ⊂ B.
2. ∥a∥Lq ≤ |B|1/q−1/p.
3. Momentos nulos:

∫
xβa(x) dx = 0 para 0 ≤ |β| ≤ n(1/p− 1).
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Equivalencia de Definiciones Atómicas

Teorema
Se tiene que Hp,q

at (Ω;X) = Hp,r
at (Ω;X) para cualesquiera 1 ≤ q, r ≤ ∞, con equivalencia

de normas.

En particular, H1(Ω;X) = H1,∞
at (Ω;X). Esto justifica el uso de átomos (p,∞) o (p, 2)

indistintamente para definir Hp.
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Espacio BMO

Definición (Espacio BMO)
Se dice que f pertenece al espacio de funciones de oscilación media acotada BMO(Ω;X)
si se tiene que el operador maximal sharp f# ∈ L∞, donde:

f#(x) := sup
Q∋x

1
|Q|

∫
Q

∥f(y) − fQ∥X dy.

Se define la norma ∥f∥BMO := ∥f#∥L∞ .
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Dualidad H1-BMO

Este resultado es fundamental para la interpolación compleja.

Teorema (Fefferman [6])
Suponga X ′ satisface la propiedad de Radon-Nikodym. Entonces, el dual de H1(Ω;X) es
BMO(Ω;X ′), con Ω = Rn,Tn.

1. Para φ ∈ BMO, el funcional f 7→
∫

Ω φ(x)f(x) dx es acotado en H1.
2. Para cualquier funcional continuo en H1, se comporta como el funcional en (1) para

una única función φ ∈ BMO.

M.A. Martínez Flores Continuidad de operadores pseudo-diferenciales en el toro Diciembre, 2025 25/64



Interpolación Compleja

Ahora, se presenta el argumento de interpolación compleja de Feffeman-Stein [12].

Teorema
Sea z 7→ Tz una familia analítica de operadores. Fije 1/p = 1 − θ/2 con 0 < θ < 1.

1. Si supy ∥Tiyf∥L1 ≲ ∥f∥H1 , y supy ∥T1+iyf∥L2 ≲ ∥f∥L2 , entonces

∥Tθf∥Lp ≲ ∥f∥Lp .

2. Si supy ∥Tiyf∥BMO ≲ ∥f∥L∞ , y supy ∥T1+iyf∥L2 ≲ ∥f∥L2 , entonces

∥Tθf∥Lp′ ≲ ∥f∥Lp′ .
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Operadores Pseudo-diferenciales en el
Toro



Diferencias Finitas Discretas

Se sigue el marco desarrollado por Ruzhansky y Turunen [11]. Para definir clases de símbolos
en el retículo Zn, reemplazamos derivadas por diferencias finitas.

Definición
Sea φ : Zn → C, entonces se definen los operadores de diferencia como

∆ξj
φ(ξ) := φ(ξ + δj) − φ(ξ),

∆ξj
φ(ξ) := φ(ξ) − φ(ξ − δj).

Además, para un multi-índice α ∈ Nn
0 , se define ∆α

ξ := ∆α1
ξ1

· · · ∆αn
ξn

.
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Propiedades de Diferencias Finitas

Proposición (Suma por partes)
Sean φ,ψ : Zn → C. Entonces, se tiene que∑

ξ∈Zn

φ(ξ)[∆α
ξ ψ(ξ)] = (−1)|α| ∑

ξ∈Zn

[∆α
ξ φ(ξ)]ψ(ξ),

dado que ambas series sean absolutamente convergentes.

Además, se cumple una regla del producto análoga a la de Leibniz:

∆α
ξ (φψ)(ξ) =

∑
β≤α

(
α

β

)
[∆β

ξφ(ξ)][∆α−β
ξ ψ(ξ + β)].
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Expansión de Taylor Discreta

Teorema (Expansión de Taylor discreta)
Sea p : Zn → C. Entonces, se puede escribir como

p(ξ + θ) =
∑

|α|<M

1
α!θ

(α)∆α
ξ p(ξ) + rM (ξ, θ),

donde θ(α) es el polinomio discreto factorial y el residuo satisface

|∆ω
ξ rM (ξ, θ)| ≲M máx

|α|=M, ν∈Q(θ)
|θ(α)∆α+ω

ξ p(ξ + ν)|.
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Clase de Símbolos Toroidales

Definición (Clase de símbolos toroidales Sm
ρ,δ(Tn × Zn))

Sea m ∈ R, sean 0 ≤ δ, ρ ≤ 1. Entonces, la clase de símbolos toroidales Sm
ρ,δ(Tn × Zn)

consiste de las funciones a := a(x, ξ) : Tn × Zn → C que son suaves en x para todo ξ, y
que satisfacen las desigualdades simbólicas

|∆α
ξ ∂

β
xa(x, ξ)| ≲αβ ⟨ξ⟩m−ρ|α|+δ|β|,

para cualesquiera multi-índices α, β ∈ Nn
0 .
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Operadores Pseudo-diferenciales Toroidales

Definición (Operadores pseudo-diferenciales toroidales)
Para a ∈ Sm

ρ,δ(Tn × Zn), se denota Ta a su operador pseudo-diferencial toroidal
correspondiente, que se define como

Taf(x) :=
∑

ξ∈Zn

ei2πx·ξa(x, ξ)f̂(ξ).

Además, se dice que Ta ∈ Ψm
ρ,δ(Tn × Zn).

Para f ∈ C∞(Tn), la serie converge absolutamente y Taf ∈ C∞(Tn).
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El Kernel de Schwartz Toroidal

La definición de Ta sugiere la representación integral:

Taf(x) =
∫
Tn
k(x, y)f(y) dy,

donde k(x, y) es el kernel de Schwartz que se expresa en el sentido de distribuciones como:

k(x, y) :=
∑

ξ∈Zn

ei2π(x−y)·ξa(x, ξ).
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Teorema de Equivalencia de Símbolos

Este resultado es crucial pues permite conectar la teoría discreta con la continua.

Teorema (Ruzhansky, Turunen [11])
Sea 0 ≤ δ ≤ 1 y 0 < ρ ≤ 1. El símbolo ã ∈ Sm

ρ,δ(Tn ×Zn) es un símbolo toroidal si y solo
si existe un símbolo euclideano a ∈ Sm

ρ,δ(Tn × Rn) tal que ã = a|Tn×Zn . Además, esta
extensión es única modulo S−∞(Tn × Rn).

Además, los operadores pseudo-diferenciales correspondientes coinciden.
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Continuidad en espacios de Lebesgue



Propiedades del Kernel para Lp

Teorema (Cardona, M., JMAA [1])
Sea T ∈ Ψm

ρ,δ(Tn × Zn) con kernel k(x, y).
1. k es suave fuera de la diagonal.
2. Dados α, β ∈ Nn

0 , para N > (m+ n+ |α+ β|)/ρ se tiene:

sup
x̸=y

|x− y|N |∂α
x ∂

β
y k(x, y)| = CαβN < ∞.

Este decaimiento polinomial es esencial para probar la acotación en espacios Lp usando
la teoría clásica. La demostración se basa en integración por partes y las propiedades de
decaimiento del símbolo.
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Acotación en L2(Tn)

El siguiente resultado es análogo al de Jorge Hounie [9]. Aquí y en la secuela, λ :=
máx{(δ − ρ)/2, 0}.

Teorema (Cardona, M., JMAA [1])
Sea p̃ : Tn × Rn → C un símbolo tal que para 0 < ρ ≤ 1, 0 ≤ δ < 1, m ≤ −nλ y
|α|, |β| ≤ ⌈n/2⌉ satisface: ∣∣∣∂α

ξ ∂
β
x p̃(x, ξ)

∣∣∣ ≤ Cαβ⟨ξ⟩m−ρ|α|+δ|β|.

Entonces Tp̃ es acotado de L2(Tn) en sí mismo.
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Estimaciones del Kernel

Para demostrar la continuidad en Lp, se obtienen estimativos de kernel para utilizar un
argumento similar al clásico de Fefferman y Stein.

Teorema (Cardona, M., JMAA [1])
Sea T ∈ Ψm

ρ,δ con las condiciones usuales.
• Si σ ≥ ε,

sup
|y−z|≤σ

∫
|x−z|>2σ

|k(x, y) − k(x, z)| dx ≤ Cε.

• Si m ≤ −n[(1 − ρ)/2 + λ] y σ < 1:

sup
|y−z|≤σ

∫
|x−z|>2σρ

|k(x, y) − k(x, z)| dx ≤ C.

También son válidos los estimativos en la otra variable del kernel.
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Continuidad de Tipo Débil (1,1)

Teorema (Cardona, M., JMAA[1])
Sea T ∈ Ψm

ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1, m ≤ −n[(1 − ρ)/2 + λ], entonces T
es del tipo débil (1, 1).

Esto se prueba utilizando una descomposición de Calderón-Zygmund y un argumento con
convoluciones similar al de Fefferman. Este resultado se demostró para el caso general de
operadores con kernel valuado en operadores análoga a la de Álvarez y Milman [8].

M.A. Martínez Flores Continuidad de operadores pseudo-diferenciales en el toro Diciembre, 2025 39/64



Continuidad H1 → L1 y L∞ → BMO

Teorema (Cardona, M., JMAA [1])
Sea T ∈ Ψm

ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1. Si m ≤ −n[(1 − ρ)/2 + λ], entonces
T y su adjunto T ∗ son aplicaciones continuas:

• del espacio de Hardy H1(Tn) en L1(Tn),
• de L∞(Tn) en BMO(Tn).

Note que ya no se requiere δ < ρ como en el resultado de Fefferman.
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Bosquejo de la Prueba: H1 → L1

Sea a un átomo en B(z, σ). Queremos acotar ∥Ta∥L1 uniformemente. Suponemos σ < 1,
el caso complementario es análogo.

1. Descomposición: Dividimos la integral en B′(z, 2σρ) (parte local) y su
complemento (parte lejana).

2. Parte Local: Usamos Hölder y la acotación Lq → L2.∫
B′

|Ta| ≲ |B′|1/2∥Ta∥L2 ≲ |B′|1/2∥a∥L2/(2−ρ) ≤ C.

3. Parte Lejana: Usamos la propiedad de cancelación del átomo (
∫
a = 0) y las

estimaciones del kernel del teorema anterior para acotar:∫
Tn\B′

|Ta(x)| dx ≤
∫
Tn\B′

∫
B

|k(x, y) − k(x, z)||a(y)| dy dx ≤ C.
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Bosquejo de la Prueba: L∞ → BMO

Sea f ∈ L∞. Para cada bola B(z, σ), descomponemos f = fχB′ + fχ(B′)c = f1 + f2. De
nuevo suponemos σ < 1.

1. Término f1 (Local): Usamos que T es acotado en L2 → L2/ρ.

1
|B|

∫
B

|Tf1| ≲ |B|−ρ/2∥Tf1∥L2/ρ ≲ |B|−ρ/2∥f1∥L2 ≲ ∥f∥L∞ .

2. Término f2 (Lejano): Para x ∈ B, Tf2(x) es una función suave. Elegimos la
constante cB = Tf2(z) (centro de la bola).

1
|B|

∫
B

|Tf2(x) − cB| dx ≤ sup
x∈B

∫
(B′)c

|k(x, y) − k(z, y)||f(y)| dy ≲ ∥f∥L∞ .
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Teorema Principal: Continuidad Lp(Tn)

Usando el argumento de interpolación compleja entre los resultados extremos (H1, L1)-
(L2, L2) y (L2, L2)-(L∞,BMO):

Teorema (Cardona, M., JMAA [1])
Sea T ∈ Ψm

ρ,δ(Tn × Zn), con 0 < ρ ≤ 1, 0 ≤ δ < 1 y

m ≤ −n
[
(1 − ρ)

∣∣∣∣1p − 1
2

∣∣∣∣+ λ

]
.

Entonces T es una aplicación continua de Lp(Tn) en sí mismo.
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Continuidad Lp → Lq

Utilizando potenciales de Bessel y la desigualdad de Hardy-Littlewood-Sobolev, se puede
extender a

Teorema (Cardona, M., JMAA [1])
Sea T ∈ Ψm

ρ,δ(Tn × Zn). T es continuo de Lp(Tn) en Lq(Tn) si:
• Caso 1 < p ≤ 2 ≤ q: m ≤ −n(1/p− 1/q + λ).
• Caso 2 ≤ p ≤ q: m ≤ −n[1/p− 1/q + (1 − ρ)(1/2 − 1/p) + λ].
• Caso p ≤ q ≤ 2: m ≤ −n[1/p− 1/q + (1 − ρ)(1/q − 1/2) + λ].
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Continuidad en espacios de Sobolev



Espacios de Sobolev revisitados

Se define al potencial de Bessel Js como el operador pseudo-diferencial con símbolo ⟨ξ⟩s.

Definición
Se dice que f ∈ W s

p (Tn), si se tiene que Jsf ∈ Lp(Tn). Se define la norma
∥f∥W s

p
:= ∥Js∥Lp .

Esta definición coincide con la presentada anteriormente cuando s es un entero positivo.
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Continuidad en Espacios de Sobolev

Teorema (Cardona, M. [3])
Sean 0 ≤ δ < 1, 0 < ρ ≤ 1, m ∈ R, y T ∈ Ψm

ρ,δ(Tn × Zn). Entonces, T se extiende a un
operador acotado de W s

p (Tn) en W s−µ
q (Tn) para 1 < p ≤ q < ∞ si:

• Caso 1 < p ≤ 2 ≤ q: µ ≥ m+ n(1/p− 1/q + λ).
• Caso 2 ≤ p ≤ q: µ ≥ m+ n[1/p− 1/q + (1 − ρ)(1/2 − 1/p) + λ].
• Caso p ≤ q ≤ 2: µ ≥ m+ n[1/p− 1/q + (1 − ρ)(1/q − 1/2) + λ].
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Demostración

La demostración utiliza la propiedad de composición con los potenciales de Bessel Js.

∥Tf∥W s−µ
q

= ∥Js−µTf∥Lq = ∥(Js−µTJ−s)Jsf∥Lq .

El operador compuesto S = Js−µTJ−s es un operador pseudo-diferencial con orden m−µ.
Si se cumplen las condiciones del teorema Lp → Lq para el orden m − µ, entonces S es
acotado de Lp en Lq.

∥S(Jsf)∥Lq ≲ ∥Jsf∥Lp = ∥f∥W s
p
.
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Resultados con Pesos



Operadores maximales

Definición
Se define al operador p-maximal de Hardy-Littlewood como

Mpf(x) := sup
Q∋x

( 1
|Q|

∫
Q

|f(x)|p dx
)1/p

.

Definición
Y al operador sharp p-maximal de Fefferman-Stein como

M#
p f(x) := sup

Q∋x

( 1
|Q|

∫
Q

|f(x) − fQ|p dx
)1/p

,

donde fQ es el promedio en el cubo Q.
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Clases de Pesos de Muckenhoupt Ap

Definición (Clases de pesos de Muckenhoupt)
Para un par de funciones localmente integrables no-negativas u,w : Ω ⊂ Rn → C, se dice
que pertenece a la clase de pesos de Muckenhoupt Ap, si

Mu(x) ≲ w(x), casi para todo x, p = 1;

sup
Q

( 1
|Q|

∫
Q
u(x) dx

)( 1
|Q|

∫
Q
w(x)−1/(p−1) dx

)p−1
< ∞, 1 < p < ∞.

El operador maximal de Hardy-Littlewood M es de tipo débil (p, p) respecto a w si y solo
si w ∈ Ap.
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Desigualdad Puntual

Se procede como en Park y Tomita [10].

Teorema (Cardona, M. [3])
Sea 1 < r ≤ 2, 0 < ρ < 1 y suponga que σ ∈ Sm

ρ,ρ(Tn × Zn) con m ≤ −n(1 − ρ)/r.
Entonces, para toda f ∈ C∞(Tn):

M#
r (Tσf)(x) ≲ Mrf(x).

Esto implica la continuidad en Lp(w) para w ∈ Ap/r:

∥Tσf∥Lp(w) ≲ ∥M#
r f∥Lp(w) ≲ ∥Mrf∥Lp(w) ≲ ∥f∥Lp(w).
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Continuidad en Espacios de Hardy Hp



Estimaciones del Kernel
En este caso se obtienen estimativos en descomposiciones anulares diádicas:

Aj(z, σ) := {x ∈ Tn : 2jσ < |x− z| ≤ 2j+1σ}.

Teorema (Cardona, M. [2])
Sea T ∈ Ψm

ρ,δ(Tn × Zn) con las condiciones usuales.
• Si σ ≥ ε,

sup
|y−z|≤σ

∫
Aj(z,σ)

|k(x, y) − k(x, z)| dx ≤ Cε2−j .

• Si m ≤ −n[(1 − ρ)/2 + λ] y σ < 1:

sup
|y−z|≤σ

∫
Aj(z,σγ)

|k(x, y) − k(x, z)| dx ≤ C2−j/ρσ1−γ/ρ.

Estos estimativos también son válidos en la otra variable.
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Continuidad Hp → Lp

Teorema (Cardona, M. [2])
Sea T ∈ Ψm

ρ,δ(Tn × Zn), 0 < ρ ≤ 1, 0 ≤ δ < 1. Suponga que

m ≤ −β − nλ para algún (1 − ρ)n2 ≤ β <
n

2 .

Entonces, el operador T es continuo de Hp(Tn) en Lp(Tn) para 1 ≥ p ≥ p0 donde

1
p0

= 1
2 + β(1/ρ+ n/2)

n(1/ρ− 1 + β) .

M.A. Martínez Flores Continuidad de operadores pseudo-diferenciales en el toro Diciembre, 2025 55/64



Concepto de Molécula

La imagen de un átomo Ta no tiene soporte compacto. Introducimos el concepto de
molécula.

Definición (Molécula (p, θ, µ))
Una función M(x) asociada a una bola B(z, σ) es una molécula si satisface

∫
M = 0 y

condiciones de decaimiento. Si σ ≥ 1:
• ∫

∥M(x)∥2
Y dx ≲ σn(1−2/p).

• ∫
∥M(x)∥2

Y |x− z|µ dx ≲ σµ+n(1−2/p).
Y si σ < 1:

• ∫
∥M(x)∥2

Y dx ≲ σn(1/q−2/p).
• ∫

∥M(x)∥2
Y |x− z|µ dx ≲ σθµ+n(1/q−2/p).

Aquí θ y q son parámetros.
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Continuidad Hp → Hp

Lema
Si M es una molécula con µ suficientemente grande, entonces M ∈ Hp y su norma solo
depende de las constantes de las condiciones de molécula.

Teorema (Cardona, M. [2])
Sea T ∈ Ψm

ρ,δ(Tn × Zn), 0 < ρ ≤ 1, 0 ≤ δ < 1. Suponga que

m ≤ −β − nλ para algún (1 − ρ)n2 ≤ β <
n

2 .

Si además T ∗(1) = 0 (en el sentido de BMO), entonces T es acotado de Hp(Tn) en sí
mismo para p0 < p ≤ 1, donde

1
p0

= 1
2 + β(1/ρ+ n/2)

n(1/ρ− 1 + β) .
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Bosquejo de Prueba: Hp → Hp

Este teorema también fue demostrado en el contexto de operadores con kernel valuado en
operadores.

1. Átomos: Sea a un átomo (p, 2). Queremos ver que Ta tiene norma Hp uniforme.
2. Moléculas: Se demuestra que bajo las hipótesis del teorema, M = Ta satisface las

condiciones de una molécula (p, θ, µ), con constantes que dependen unicamente del
operador.

• Las estimaciones L2 y Lq de T controlan la norma L2 de M cerca del soporte del
átomo.

• Las estimaciones del kernel controlan el decaimiento de M lejos del soporte.
3. Cancelación: Se usa la condición T ∗(1) = 0:∫

Ta = ⟨1, Ta⟩ = ⟨T ∗(1), a⟩ = 0.

4. Conclusión: Como Ta es una molécula, ∥Ta∥Hp ≤ C.
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Conclusiones



Resumen de Aportes

1. Marco Teórico: Se consolidó la teoría de operadores pseudo-diferenciales en el toro
usando análisis discreto y el teorema de equivalencia.

2. Resultados Lp: Se probaron condiciones óptimas de continuidad en Lp y Lp → Lq

para clases generales Sm
ρ,δ, extendiendo resultados previos de Fefferman,

Álvarez-Hounie y Delgado.
3. Espacios de Hardy: Se desarrolló la teoría de moléculas en el toro para probar

continuidad Hp → Lp y Hp → Hp bajo la condición T ∗(1) = 0.
4. Pesos y Sobolev: Se obtuvieron desigualdades con pesos Ap y resultados en la

escala de Sobolev mediante el operador maximal sharp.

M.A. Martínez Flores Continuidad de operadores pseudo-diferenciales en el toro Diciembre, 2025 60/64



Referencias Seleccionadas (I)

Cardona, D. y Martínez, M. A.: Estimates for pseudo-differential operators on the torus revisited. I.
J. Math. Anal. Appl., 2026.

Cardona, D. y Martínez, M. A.: Estimates for pseudo-differential operators on the torus revisited. II.
arXiv:2505.01573, 2025.

Cardona, D. y Martínez, M. A.: Estimates for pseudo-differential operators on the torus revisited. III.
arXiv:2508.13338, 2025.

M.A. Martínez Flores Continuidad de operadores pseudo-diferenciales en el toro Diciembre, 2025 61/64



Referencias Seleccionadas (II)

Delgado, J.: Lp bounds for pseudo-differential operators on the torus. Operator Theory: Advances
and Applications, 2012.

Fefferman, C.: Lp bounds for pseudo-differential operators. Israel Journal of Mathematics, 1973.

Fefferman, C.: Characterizations of bounded mean oscillation. Bulletin of the American
Mathematical Society, 1971.

Álvarez, J. y Hounie, J.: Estimates for the kernel and continuity properties of pseudo-differential
operators. Arkiv för Matematik, 1990.

Álvarez, J. y Milman, M.: Vector valued inequalities for strongly singular Calderón-Zygmund
operators. Revista Matemática Iberoamericana, 2(4):405–426, 1986.

M.A. Martínez Flores Continuidad de operadores pseudo-diferenciales en el toro Diciembre, 2025 62/64



Referencias Seleccionadas (III)

Hounie, J.: On the L2 continuity of pseudo-differential operators. Communications in Partial
Differential Equations, 11(7):765–778, 1986.

Park, B. J. y Tomita, N.: Sharp maximal function estimates for linear and multilinear pseudo-
differential operators. Journal of Functional Analysis, 287(12), 2024

Ruzhansky, M. y Turunen, V.: Pseudo-differential operators and symmetries: Background analy- sis
and advanced topics. Birkhäuser, Basel, 2010

Fefferman, C. y Stein, E. M.: Hp spaces of several variables. Acta Mathematica, 129(0):137–193,
1972.
Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.
Princeton Univ. Press, 1993.

M.A. Martínez Flores Continuidad de operadores pseudo-diferenciales en el toro Diciembre, 2025 63/64



¡Gracias por su atención!


	Introducción
	Preliminares y Herramientas
	Espacios de Lebesgue y Pesos
	Teoría de Interpolación
	Análisis de Fourier y Distribuciones

	Espacios de Hardy y BMO
	Operadores Pseudo-diferenciales en el Toro
	Continuidad en espacios de Lebesgue
	Estimaciones del Kernel y Continuidad Débil
	Continuidad en Espacios de Lebesgue Lp

	Continuidad en espacios de Sobolev
	Resultados con Pesos
	Continuidad en Espacios de Hardy Hp
	Moléculas

	Conclusiones

