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Introduccion



Contexto General

El anélisis armdnico y la teoria de operadores pseudo-diferenciales constituyen herramientas
fundamentales en el andlisis armdnico moderno.

® Permiten estudiar la regularidad de soluciones de ecuaciones diferenciales parciales.
® Unifican la teoria de operadores diferenciales y multiplicadores de Fourier.
® Proveen un marco para cuantificar la acotacién en diversos espacios funcionales.

En el caso Euclidiano (R™), la teoria esta bien establecida gracias a trabajos de Alberto
Calderén, Antoni Zygmund, Lars Hormander y Charles Fefferman.



Notaciéon y Terminologia

A lo largo de esta presentacién utilizaremos la siguiente notacién estandar:
¢ Desigualdad salvo constantes: A < B indica que existe una constante C' > 0 tal
que A < CB. Si C depende de un pardmetro «, escribimos A <, B.
* Soportes japoneses: Definimos (z) := /1 + [z]? para capturar el comportamiento
asintético sin presentar problemas en el origen.
® Multi-indices: Para a € Njj, denotamos la derivada parcial como 9% := 93} - - - 97"
y su longitud como |a| = 3 «;.



El Problema en el Caso Euclidiano

Para 0 < 6,p < 1, consideramos la clase de simbolos de Hdrmander S7%(R™ x R"),
constituida por funciones suaves a : R" x R™ — C, que satisfacen:

0708 a(,€)] Sap ()AL,

El operador pseudo-diferencial asociado se define como:

o~

Tuf(e) = [ e a(a,€)f(6) de.

n

donde ]? corresponde a la transformada de Fourier usual en R™. Entonces, se dice que
T, € \I!Z%(R” x R™).



El Teorema Clasico de Fefferman

Uno de los resultados centrales que motiva esta tesis es el siguiente:

Teorema (Fefferman [5])

Sean0<d0<1l-e<1 yseaT € U7 _s(R" xR"). Suponga que

m < —ne

p 2|

1 1 ‘

Entonces el operador T extiende a un operador continuo de LP(R™) en si mismo para
1 <p<oo.



Objetivos de la Tesis

El anélisis en el toro T™ presenta desafios tnicos debido a la naturaleza discreta del espacio
de frecuencias (Z"). Los objetivos son:

1.
2.

Formalizar el célculo simbdlico en el toro utilizando diferencias finitas discretas.
Extender los resultados de continuidad L? de Fefferman y Alvarez-Hounie [7] al
contexto toroidal.

Establecer condiciones precisas para la continuidad en la escala de espacios de Hardy
HP (p<1).

Obtener resultados en espacios con pesos A, acorde a técnicas de Park y Tomita
[10], y espacios de Sobolev.

Note que no es posible extender los resultados euclidianos al toro mediante el uso de cartas
locales, debido a que los operadores pseudo-diferenciales no son estables cuando p < 1—46.
Ademas, los espacios de funciones de Hardy y BMO no son estables al multiplicarse por
funciones test, lo que no permite realizar una particién de la unidad adecuada.



Preliminares y Herramientas



Definiciones Basicas en el Toro

Se define al toro n-dimensional como el grupo aditivo cociente T" := R"/Z" = (R/Z)".

El toro puede ser identificado con el conjunto [0,1)".

Ademas, se considera con la topologia cociente y la medida de Lebesgue restringida.



Espacios de Lebesgue LP(T")

Sea w : T" — C una funcién localmente integrable no-negativa. Entonces, se puede definir
una medida

Definicién (Espacios de Lebesgue pesados)

Se dice que una funcién (fuertemente) medible f : T" — X, pertenece al espacio de
Lebesgue pesado LP(T™; X;w) cuando

1/p
£l = ([, 1@ dut)) < oo,

paral < p < oo. Cuando p = oo, cuando es acotada excepto en un conjunto de
w-medida cero.



Propiedades Basicas de I

Proposicién (Desigualdad de Hélder)

Sean 1 < p,q < oo, tales que % + % = 1. Entonces, para g € L1(Q; X) y
f € LP(Q;B(X,Y)), se tiene que fg € L' (;Y) y

Ifgllzy < [ fllzellglla-

Proposicién (Desigualdad de Minkowski)

Dado 1 < p < 0, sean f,g € LP(Q; X). Entonces se tiene que

I+ gllze < I fllze + llgllze-



Continuidad de Tipo Débil

Definicién (Tipo Débil (p, q))

Sea T un operador desde LP(S); X;w) al espacio de funciones medibles desde ¥ hacia Y .
Se dice que T es de tipo (p,q) débil respecto a los pesos (u,w), con g < 0o, si se tiene
que:

q
ufe € 2 ITS @)y > A} S (M)

Esta nocidén es crucial para aplicar teoremas de interpolacién como el de Marcinkiewicz.



Interpolacién de Marcinkiewicz

Teorema (Interpolacién de Marcinkiewicz)

Sean1 < pg <p;1 <00, y1<qo < qr < oo, tales que p; < gj. Y sea T un operador
sublineal de tipo débil (po,qo) y (p1,q1), respecto a las medidas (u,w). Entonces, se
tiene que T es de tipo fuerte (p, q) respecto a (u,w) parapyo <p <pi, qo < q<qi, y
p < q, con la forma

1 1-6 0 1 1-10 0
+

9

b Po b1 q q0 q1



Analisis de Fourier en T" y Z"

Definicién (Espacio de Schwartz S(Z"™; X))
El espacio de funciones de decaimiento rapido ¢ : Z™ — X tales que para todo M > 0,

le(@llx Sar (€)M

Definicion (Transformada de Fourier periodica)
Sea Fpn : C°(T"; X) — S(Z™; X)) definida por

Fo)©) = O = [ e *¢4(w)do.

Su inversa es

(Frap)(@) = Y 2 ¢p(¢).

£ezn



Identidad de Plancherel

La teoria L? se fundamenta en la isometria entre el espacio de funciones y el espacio de
coeficientes.

Teorema (Identidad de Plancherel)

Siu € L?(T™; X), entonces 1 € (*(Z"™; X), y se cumple que

[l = [lull2-



Distribuciones en el Toro

Definicion (Distribuciones Periédicas D'(T"))
El espacio de distribuciones periédicas D'(T"; X) consiste de los operadores lineales
continuos definidos de C*>°(T") en X.

Toda funcién f € LP(T"; X) es una distribucién periédica mediante el funcional definido
como

(f,0) = f(x)p(x) da.
’]I‘n

Teorema (Distribuciones Discretas S'(Z"; X))

Los operadores lineales continuos definidos de S(Z™) en X tienen la forma



Analisis de distribuciones

Definicién (Derivada Distribucional)

Para w € D'(T"), definimos su derivada distribucional 9*u mediante:

(0%u, ) = (=1)!*(u, 0%)

Definicién (Transformada de Fourier distribucional)

Ademds, se define la transormada de Fourier distribucional F : D'(T"; X) — S'(Z"; X),
como

(Fu, @) == (u,10 FLp).
Donde (10 f)(z) = f(—x).



Espacios de Sobolev

Definicién (Espacios de Sobolev)

Seal <p< oo yseak € Ny. El espacio de Sobolev sz“' (T™; X) consiste de todas las
funciones f € LP(T"; X) tales que para cualquier multi-indice |o| < k se tiene que 0* f
existe (en el sentido de distribuciones) y pertenecen a LP(T™; X). Para tales funciones se
define

1/p
[fllws = (Z HaafH]ip) , (1<p<oo).

|| <k



Espacios de Hardy y BMO



Espacio de Hardy H'

Se adapta la teoria de Fefferman-Stein [12]. Con Q = R",T".

Definicién (Espacio de Hardy H')

Se dice que f € L*(; X) se encuentra en el espacio de Hardy H'(Q; X) si existen
fis-- fn € LY(Q; X) que satisfacen

Se escribe fj =: R; f (transformada de Riesz), y se define la norma

1 e = 1 Fllzs + D 1R flla

J=1



Espacios de Hardy Atémicos HY,

Para 0 < p < 1, definimos HP(T™) mediante 4tomos (p, q).

Definicién (Atomo (p, q))

Seal < q<ooyp<1. Una funcién a(x) es un (p,q)-atomo si existe una bola B tal
que:

1. suppa C B.
2. |la||ra < |BJVa1/p,
3. Momentos nulos: [ x2Pa(z)dx =0 para 0 < |8] < n(1/p—1).



Equivalencia de Definiciones Atémicas

Teorema

Se tiene que HE1(Q; X) = HY(Q; X) para cualesquiera 1 < g, < 0o, con equivalencia
de normas.

En particular, H1(Q; X) = HY>(Q; X). Esto justifica el uso de 4tomos (p,0) o (p,2)
indistintamente para definir HP.



Espacio BMO

Definicién (Espacio BMO)

Se dice que f pertenece al espacio de funciones de oscilacién media acotada BMO(Q); X)
si se tiene que el operador maximal sharp f# € L, donde:

@)= oo [ 15w)  fallx

Se define la norma || f||smo = ||f7 || o



Dualidad H!-BMO

Este resultado es fundamental para la interpolacién compleja.

Teorema (Fefferman [6])

Suponga X' satisface la propiedad de Radon-Nikodym. Entonces, el dual de H'(Q; X) es
BMO(Q; X'), con Q@ = R™, T".
1. Para p € BMO, el funcional f — [ ¢(x)f(z)dx es acotado en H'.

2. Para cualquier funcional continuo en H', se comporta como el funcional en (1) para
una tnica funcién ¢ € BMO.



Interpolacion Compleja

Ahora, se presenta el argumento de interpolacién compleja de Feffeman-Stein [12].

Teorema

Sea z +— T, una familia analitica de operadores. Fije 1/p=1—60/2 con 0 < 6§ < 1.
L. Sisupy | Tiyfllrr S 1f s v supy | Tisiyflizz S || fllz2. entonces

1Ty flle S N fllze-
2. Sisup, ||TiyfllBmo < I fllzoe, ¥ supy, 1 Titiy fllzz S NI fll L2, entonces

“TGf“LP’ S HfHL;D"



Operadores Pseudo-diferenciales en el
Toro



Diferencias Finitas Discretas

Se sigue el marco desarrollado por Ruzhansky y Turunen [11]. Para definir clases de simbolos
en el reticulo Z", reemplazamos derivadas por diferencias finitas.

Definicién

Sea p : Z™ — C, entonces se definen los operadores de diferencia como
Ag; (€)= (€ +6;) — 0(&),

Be,0(€) = (&) — p(€ — 5)).

Ademas, para un multi-indice o € NI!, se define A? o= A?ll e A?:



Propiedades de Diferencias Finitas

Proposicién (Suma por partes)

Sean ¢, : Z™ — C. Entonces, se tiene que

Y pOAY(E) DS AL (@) (6),

VAL Eczn
dado que ambas series sean absolutamente convergentes.
Ademas, se cumple una regla del producto andloga a la de Leibniz:

Ag(p)(€) =Y (g) (AL p(ON[AL (e + B))-

BLa



Expansion de Taylor Discreta

Teorema (Expansion de Taylor discreta)

Sea p: Z"™ — C. Entonces, se puede escribir como
p P

pE+0) = Y —HOAZE) +ru(€,6),
lajl<M

donde (%) es el polinomio discreto factorial y el residuo satisface

A€ O Sar | mmdx 6O ATHP(E + 1),



Clase de Simbolos Toroidales

Definicién (Clase de simbolos toroidales S7's(T" x Z"))

Seam € R, sean 0 < §,p < 1. Entonces, la clase de simbolos toroidales %(T” X Z™)
consiste de las funciones a := a(x,§) : T" x Z™ — C que son suaves en x para todo &, y
que satisfacen las desigualdades simbdlicas

|A20Ea(z, )| Sap ()™ PITIAL

para cualesquiera multi-indices o, 8 € Ng.



Operadores Pseudo-diferenciales Toroidales

Definicién (Operadores pseudo-diferenciales toroidales)

Para a € S7%5(T" x Z"), se denota T, a su operador pseudo-diferencial toroidal
correspondiente, que se define como

Z ei2meg ]?( o).

Eegm
Ademas, se dice que T, € \I!Z}(;(’]I‘” X Z").

Para f € C°°(T"™), la serie converge absolutamente y T, f € C*°(T").



El Kernel de Schwartz Toroidal

La definicion de T, sugiere la representacion integral:

Tf@ = [ k) f)dy,
donde k(x,y) es el kernel de Schwartz que se expresa en el sentido de distribuciones como:

Z 6127rz y)- é-)

gezn



Teorema de Equivalencia de Simbolos

Este resultado es crucial pues permite conectar la teoria discreta con la continua.

Teorema (Ruzhansky, Turunen [11])

Sea0 <0 <1y0<p<1. Elsimboloa € S} 5(T™ x Z) es un simbolo toroidal si y solo
si existe un simbolo euclideano a € S7s(T" x R”) tal que @ = a|rnxzn. Ademas, esta
extension es tnica modulo S~°°(T" >< ]R”)

Ademas, los operadores pseudo-diferenciales correspondientes coinciden.



Continuidad en espacios de Lebesgue



Propiedades del Kernel para L?

Teorema (Cardona, M., JMAA [1])

Sea T € Ws(T" x Z") con kernel k(x,y).
1. k es suave fuera de la diagonal.
2. Dados «, B € Nij, para N > (m +n + |a + f|)/p se tiene:

sup |z — y| V10205 k(z, y)| = Capy < 0.
Ty

Este decaimiento polinomial es esencial para probar la acotacién en espacios LP usando
la teoria clasica. La demostracion se basa en integracién por partes y las propiedades de
decaimiento del simbolo.



Acotaciéon en L?*(T")

El siguiente resultado es andlogo al de Jorge Hounie [9]. Aqui y en la secuela, A :=
méx{(3 — ) /2,0}.

Teorema (Cardona, M., JMAA [1])

Seap: T" x R™ — C un simbolo tal que para0 < p<1,0<d<1, m< —nAy
lal, | 8| < [n/2] satisface:

‘ aaﬁp (z,€) ’ <§>m—9|a\+5|5|‘

Entonces Tj es acotado de L*(T™) en si mismo.



Estimaciones del Kernel

Para demostrar la continuidad en LP, se obtienen estimativos de kernel para utilizar un
argumento similar al clasico de Fefferman y Stein.

Teorema (Cardona, M., JMAA [1])
SeaT' € W5 con las condiciones usuales.
e Sio>c¢g

sup / |k(x,y) — k(z,2)|dz < C..
ly—z|<o J|x—2|>20

e Sim<-n[(l-p)/24+Nyoc<l:

sup / |k(x,y) — k(z,2)|dz < C.
ly—z|<o J|x—2|>20°

También son validos los estimativos en la otra variable del kernel.



Continuidad de Tipo Débil (1,1)

Teorema (Cardona, M., JMAA[L])

SeaT € Ws(T" x Z"), con0 < p<1,0<6 <1, m<—n[(l—-p)/2+ A, entonces T
es del tipo débil (1,1).

Esto se prueba utilizando una descomposicién de Calderén-Zygmund y un argumento con
convoluciones similar al de Fefferman. Este resultado se demostré para el caso general de
operadores con kernel valuado en operadores anéloga a la de Alvarez y Milman [8].



Continuidad H' — L' y L>® — BMO

Teorema (Cardona, M., JMAA [1])

SeaT € Ws(T" x Z"), con0 < p<1,0<6 <1 Sim < —n[(1—p)/2+ A], entonces
T y su adjunto T son aplicaciones continuas:

® del espacio de Hardy H'(T™) en L'(T"),
e de L*°(T") en BMO(T").

Note que ya no se requiere § < p como en el resultado de Fefferman.



Bosquejo de la Prueba: H' — L!

Sea a un atomo en B(z,0). Queremos acotar ||Ta||;1 uniformemente. Suponemos o < 1,
el caso complementario es analogo.

1. Descomposicion: Dividimos la integral en B'(z,207”) (parte local) y su
complemento (parte lejana).

2. Parte Local: Usamos Hélder y la acotacién L9 — L2,
[ 1Tal S 1B Tall iz S 1B all e < C.
B/

3. Parte Lejana: Usamos la propiedad de cancelacion del atomo ([ a =0) y las
estimaciones del kernel del teorema anterior para acotar:

L. ima@lds< [ [ kwy) - k. 2)lla()| dyde < C.
Tr\B’ T"\B' JB



Bosquejo de la Prueba: L*° — BMO

Sea f € L. Para cada bola B(z,0), descomponemos f = fxp' + fx(p)e = f1+ f2. De
nuevo suponemos o < 1.

1. Término f; (Local): Usamos que T es acotado en L? — L2/,
1 - —
B|/B|Tf1 SIBIPTfill pore S BP0 fill e S fllpoe-

2. Término f> (Lejano): Para z € B, T fa(x) es una funcién suave. Elegimos la
constante cg = T'f2(2) (centro de la bola).

r;\ /B ITfolw) = el dw < sup /<Bf)c k(. y) = k(2 9)|1£ () dy S |1l



Teorema Principal: Continuidad L”(T")

Usando el argumento de interpolacién compleja entre los resultados extremos (H*', L')-
(L27 L2) y (L27 LQ)_(LOO7 BMO)

Teorema (Cardona, M., JMAA [1])

SeaTe\IJZ?(;(T”XZ”),con0<p§1,0§5<1y

wsonfonft 4]

Entonces T es una aplicacién continua de LP(T™) en si mismo.



Continuidad P — L1

Utilizando potenciales de Bessel y la desigualdad de Hardy-Littlewood-Sobolev, se puede
extender a

Teorema (Cardona, M., JMAA [1])

Sea T € Us(T" x Z"). T es continuo de LP(T") en LI(T") si:
® Casol<p<2<gm<-n(l/p—1/qg+ N).
® Caso2<p<gm<-n[l/p-1/g+(1-p)(1/2-1/p) + Al
® Casop<g<2:m<-n[l/p—1/g+(1-p)(1/qg—1/2) + A



Continuidad en espacios de Sobolev



Espacios de Sobolev revisitados

Se define al potencial de Bessel J® como el operador pseudo-diferencial con simbolo (£)°.
Definicion

Se dice que f € W, (T"), si se tiene que J°f € LP(T"). Se define la norma

1fllwg = 11J°]| e

Esta definicién coincide con la presentada anteriormente cuando s es un entero positivo.



Continuidad en Espacios de Sobolev

Teorema (Cardona, M. [3])

Sean0<6<1,0<p<1 meR,yT eV (T" x Z"). Entonces, T se extiende a un
operador acotado de W (T") en W;=H(T") para 1<p<qg<oosi

® Casol<p<2<gq:p=m+n(l/p—1/q+A).
® Caso2<p<qgu>m+n[l/p—1/qg+ (1 —p)(1/2—1/p) + A
e Casop<qg<2:pu>m+n[l/p—1/qg+ (1 —p)(1/q—1/2)+ A].



Demostracion

La demostracion utiliza la propiedad de composicién con los potenciales de Bessel J°.
T fllysn = 15T fllze = NI HTT )T F 1.

El operador compuesto S = J*7#T'J~% es un operador pseudo-diferencial con orden m — .
Si se cumplen las condiciones del teorema LP — L9 para el orden m — p, entonces S es
acotado de LP en LY.

IS )lla S NT°flle = 1 fllw-



Resultados con Pesos



Operadores maximales

|

Definicién
Se define al operador p-maximal de Hardy-Littlewood como

My (o) = su (7 If(w)lpdx>l/p-

Definicién

|

Y al operador sharp p-maximal de Fefferman-Stein como

M50 = (g 0~ sabax)

donde fq es el promedio en el cubo Q).



Clases de Pesos de Muckenhoupt A,

Definicién (Clases de pesos de Muckenhoupt)

Para un par de funciones localmente integrables no-negativas u,w : 2 C R™ — C, se dice
que pertenece a la clase de pesos de Muckenhoupt A, si

Mu(z) S w(z), casi para todoz, p=1,

sup <\Q! / u(x) dx) (ﬁ/@w(l‘)_l/(p_l) dx)p_l <oo, l<p<oo.

El operador maximal de Hardy-Littlewood M es de tipo débil (p, p) respecto a w si y solo
siw e A,



Desigualdad Puntual

Se procede como en Park y Tomita [10].

Teorema (Cardona, M. [3])

Seal<r <2 0<p<1ysupongaquec e S, (T" x Z") conm < —n(1l — p)/r.
Entonces, para toda f € C*°(T"):

MF (T, f)(x) S M, f ().

Esto implica la continuidad en LP(w) para w € A, ,:

1To fll Lo () S IME Flliee) S IMrfllzew) S 1l zew)-



Continuidad en Espacios de Hardy H”



Estimaciones del Kernel

En este caso se obtienen estimativos en descomposiciones anulares diadicas:

Aj(Z,O‘) = {ZE eT": QJO' < |ZE _ Z| < 2j+10,}.

Teorema (Cardona, M. [2])
Sea T € Ws(T" x Z") con las condiciones usuales.
® Siog>e¢,

sup / |k(z,y) — k(z, z)|dz < C.277.
Aj(z,0)

ly—2|<o

e Sim<-n[(l-—p)/24+Nyoc<l:

Sup / k(z,y) — k(z, z)|dz < C279/Pg' =P,
Aj(z,07)

ly—2|<o

Estos estimativos también son validos en la otra variable.



Continuidad H? — P

Teorema (Cardona, M. [2])
SeaT € U5(T" x Z"), 0 < p <1,0 <0 < 1. Suponga que

m < —f3 —n\ para algin (1—p)g <B<

STE

Entonces, el operador T es continuo de HP(T™) en LP(T™) para 1 > p > po donde

11 N B(1/p+n/2)

po 2 n(l/p-1+p)



Concepto de Molécula

La imagen de un dtomo T'a no tiene soporte compacto. Introducimos el concepto de
molécula.

Definicién (Molécula (p, 0, i))

Una funcién M (x) asociada a una bola B(z,0) es una molécula si satisface [ M =0 y
condiciones de decaimiento. Si o > 1:

o [|M(z)|2 dz S o(-2/P),

o [IM(z)|2]z — 2| dz < grtn(1-2/p),
Ysio<1:

o [IM()|? da < o"(/a=2/p).

o [IM()|2|x — 2| dz < gfrtn(/a=2/p).

Aqui 6 y q son pardmetros.



Continuidad H? — H?

Si M es una molécula con . suficientemente grande, entonces M € HP y su norma solo
depende de las constantes de las condiciones de molécula.

Teorema (Cardona, M. [2])
SeaT € \IJZ?(;(T" xZ"),0<p<1,0<d<1. Suponga que

m < —f3 —nX\ para algin (1 —p)g <pB< g
Si ademds T*(1) = 0 (en el sentido de BMO), entonces T es acotado de HP(T") en si
mismo para pg < p < 1, donde
1 1. B(/p+n/2)

po 2 n(l/p—1+8)



Bosquejo de Prueba: H? — H?

Este teorema también fue demostrado en el contexto de operadores con kernel valuado en
operadores.
1. Atomos: Sea a un atomo (p,2). Queremos ver que T'a tiene norma HP uniforme.

2. Moléculas: Se demuestra que bajo las hipétesis del teorema, M = T'a satisface las
condiciones de una molécula (p, 6, i), con constantes que dependen unicamente del
operador.

® |as estimaciones L? y L7 de T controlan la norma L? de M cerca del soporte del
atomo.
® | as estimaciones del kernel controlan el decaimiento de M lejos del soporte.

3. Cancelacion: Se usa la condicién T%(1) = 0:

/Ta — (1,Ta) = (T*(1),a) = 0.

4. Conclusién: Como Ta es una molécula, ||Tallgr < C.
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Resumen de Aportes

1. Marco Tedrico: Se consolidé la teoria de operadores pseudo-diferenciales en el toro
usando analisis discreto y el teorema de equivalencia.

2. Resultados LP: Se probaron condiciones éptimas de continuidad en LP y LP — LY
para clases generales oo extendiendo resultados previos de Fefferman,
Alvarez-Hounie y Delgado.

3. Espacios de Hardy: Se desarrollé la teoria de moléculas en el toro para probar
continuidad HP — LP y HP — HP bajo la condicién T%(1) = 0.

4. Pesos y Sobolev: Se obtuvieron desigualdades con pesos A, y resultados en la
escala de Sobolev mediante el operador maximal sharp.
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